Loading…

Comparisons of solving a chromatographic separation problem using MINLP methods

In the present paper, comparisons of solving a cyclic chromatographic separation problem using Mixed Integer Nonlinear Programming (MINLP) methods are presented. The dynamics of the chromatographic separation process is modeled as a boundary value problem that is solved, repeatedly within the optimi...

Full description

Saved in:
Bibliographic Details
Published in:Computers & chemical engineering 2004-05, Vol.28 (5), p.673-682
Main Authors: Emet, Stefan, Westerlund, Tapio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c453t-6affab581943ddc93fbad0dd3f5840b65d3ce117fd11bad0f782bdf59636ef8b3
cites cdi_FETCH-LOGICAL-c453t-6affab581943ddc93fbad0dd3f5840b65d3ce117fd11bad0f782bdf59636ef8b3
container_end_page 682
container_issue 5
container_start_page 673
container_title Computers & chemical engineering
container_volume 28
creator Emet, Stefan
Westerlund, Tapio
description In the present paper, comparisons of solving a cyclic chromatographic separation problem using Mixed Integer Nonlinear Programming (MINLP) methods are presented. The dynamics of the chromatographic separation process is modeled as a boundary value problem that is solved, repeatedly within the optimization, using a relatively fast and numerically robust finite difference method. The MINLP methods considered are the Extended Cutting Plane (ECP), the Branch and Bound (BB), and the Outer Approximation (OA) methods. The comparisons indicate the advantages of the ECP method that needs relatively few function evaluations. The results also show that the total efficiency of traditional OA and BB methods, that solves a sequence of Nonlinear Programming (NLP) subproblems, is substantially degradated in these kinds of optimization problems involving both a combinatorial task and time-consuming numerical evaluations.
doi_str_mv 10.1016/j.compchemeng.2004.02.010
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28112669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098135404000365</els_id><sourcerecordid>28112669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-6affab581943ddc93fbad0dd3f5840b65d3ce117fd11bad0f782bdf59636ef8b3</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EEqXwH8LClnCO8-GMKOKjUqEMMFuOfW5dJXGw00r8exKVgZHphnveV3cPIbcUEgq0uN8nynWD2mGH_TZJAbIE0gQonJEF5SWLM1bm52QBUPGYsjy7JFch7AEgzThfkE09xaW3wfUhciYKrj3afhvJSO286-Totl4OO6uigBMnR-v6aPCuabGLDmFGX1dv6_eow3HndLgmF0a2AW9-55J8Pj1-1C_xevO8qh_WscpyNsaFNEY2OadVxrRWFTON1KA1MznPoClyzRRSWhpN6bwxJU8bbfKqYAUa3rAluTv1Trd8HTCMorNBYdvKHt0hiJRTmhZFNYHVCVTeheDRiMHbTvpvQUHMCsVe_FEoZoUCUjEpnLL1KYvTJ0eLXgRlsVeorUc1Cu3sP1p-ADgRgoo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28112669</pqid></control><display><type>article</type><title>Comparisons of solving a chromatographic separation problem using MINLP methods</title><source>ScienceDirect Freedom Collection</source><creator>Emet, Stefan ; Westerlund, Tapio</creator><creatorcontrib>Emet, Stefan ; Westerlund, Tapio</creatorcontrib><description>In the present paper, comparisons of solving a cyclic chromatographic separation problem using Mixed Integer Nonlinear Programming (MINLP) methods are presented. The dynamics of the chromatographic separation process is modeled as a boundary value problem that is solved, repeatedly within the optimization, using a relatively fast and numerically robust finite difference method. The MINLP methods considered are the Extended Cutting Plane (ECP), the Branch and Bound (BB), and the Outer Approximation (OA) methods. The comparisons indicate the advantages of the ECP method that needs relatively few function evaluations. The results also show that the total efficiency of traditional OA and BB methods, that solves a sequence of Nonlinear Programming (NLP) subproblems, is substantially degradated in these kinds of optimization problems involving both a combinatorial task and time-consuming numerical evaluations.</description><identifier>ISSN: 0098-1354</identifier><identifier>EISSN: 1873-4375</identifier><identifier>DOI: 10.1016/j.compchemeng.2004.02.010</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Branch and Bound ; Chromatographic separation ; Extended Cutting Plane ; Mixed Integer Nonlinear Programming ; Outer Approximation</subject><ispartof>Computers &amp; chemical engineering, 2004-05, Vol.28 (5), p.673-682</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-6affab581943ddc93fbad0dd3f5840b65d3ce117fd11bad0f782bdf59636ef8b3</citedby><cites>FETCH-LOGICAL-c453t-6affab581943ddc93fbad0dd3f5840b65d3ce117fd11bad0f782bdf59636ef8b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Emet, Stefan</creatorcontrib><creatorcontrib>Westerlund, Tapio</creatorcontrib><title>Comparisons of solving a chromatographic separation problem using MINLP methods</title><title>Computers &amp; chemical engineering</title><description>In the present paper, comparisons of solving a cyclic chromatographic separation problem using Mixed Integer Nonlinear Programming (MINLP) methods are presented. The dynamics of the chromatographic separation process is modeled as a boundary value problem that is solved, repeatedly within the optimization, using a relatively fast and numerically robust finite difference method. The MINLP methods considered are the Extended Cutting Plane (ECP), the Branch and Bound (BB), and the Outer Approximation (OA) methods. The comparisons indicate the advantages of the ECP method that needs relatively few function evaluations. The results also show that the total efficiency of traditional OA and BB methods, that solves a sequence of Nonlinear Programming (NLP) subproblems, is substantially degradated in these kinds of optimization problems involving both a combinatorial task and time-consuming numerical evaluations.</description><subject>Branch and Bound</subject><subject>Chromatographic separation</subject><subject>Extended Cutting Plane</subject><subject>Mixed Integer Nonlinear Programming</subject><subject>Outer Approximation</subject><issn>0098-1354</issn><issn>1873-4375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAQhi0EEqXwH8LClnCO8-GMKOKjUqEMMFuOfW5dJXGw00r8exKVgZHphnveV3cPIbcUEgq0uN8nynWD2mGH_TZJAbIE0gQonJEF5SWLM1bm52QBUPGYsjy7JFch7AEgzThfkE09xaW3wfUhciYKrj3afhvJSO286-Totl4OO6uigBMnR-v6aPCuabGLDmFGX1dv6_eow3HndLgmF0a2AW9-55J8Pj1-1C_xevO8qh_WscpyNsaFNEY2OadVxrRWFTON1KA1MznPoClyzRRSWhpN6bwxJU8bbfKqYAUa3rAluTv1Trd8HTCMorNBYdvKHt0hiJRTmhZFNYHVCVTeheDRiMHbTvpvQUHMCsVe_FEoZoUCUjEpnLL1KYvTJ0eLXgRlsVeorUc1Cu3sP1p-ADgRgoo</recordid><startdate>20040501</startdate><enddate>20040501</enddate><creator>Emet, Stefan</creator><creator>Westerlund, Tapio</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040501</creationdate><title>Comparisons of solving a chromatographic separation problem using MINLP methods</title><author>Emet, Stefan ; Westerlund, Tapio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-6affab581943ddc93fbad0dd3f5840b65d3ce117fd11bad0f782bdf59636ef8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Branch and Bound</topic><topic>Chromatographic separation</topic><topic>Extended Cutting Plane</topic><topic>Mixed Integer Nonlinear Programming</topic><topic>Outer Approximation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Emet, Stefan</creatorcontrib><creatorcontrib>Westerlund, Tapio</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Emet, Stefan</au><au>Westerlund, Tapio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparisons of solving a chromatographic separation problem using MINLP methods</atitle><jtitle>Computers &amp; chemical engineering</jtitle><date>2004-05-01</date><risdate>2004</risdate><volume>28</volume><issue>5</issue><spage>673</spage><epage>682</epage><pages>673-682</pages><issn>0098-1354</issn><eissn>1873-4375</eissn><abstract>In the present paper, comparisons of solving a cyclic chromatographic separation problem using Mixed Integer Nonlinear Programming (MINLP) methods are presented. The dynamics of the chromatographic separation process is modeled as a boundary value problem that is solved, repeatedly within the optimization, using a relatively fast and numerically robust finite difference method. The MINLP methods considered are the Extended Cutting Plane (ECP), the Branch and Bound (BB), and the Outer Approximation (OA) methods. The comparisons indicate the advantages of the ECP method that needs relatively few function evaluations. The results also show that the total efficiency of traditional OA and BB methods, that solves a sequence of Nonlinear Programming (NLP) subproblems, is substantially degradated in these kinds of optimization problems involving both a combinatorial task and time-consuming numerical evaluations.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compchemeng.2004.02.010</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0098-1354
ispartof Computers & chemical engineering, 2004-05, Vol.28 (5), p.673-682
issn 0098-1354
1873-4375
language eng
recordid cdi_proquest_miscellaneous_28112669
source ScienceDirect Freedom Collection
subjects Branch and Bound
Chromatographic separation
Extended Cutting Plane
Mixed Integer Nonlinear Programming
Outer Approximation
title Comparisons of solving a chromatographic separation problem using MINLP methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparisons%20of%20solving%20a%20chromatographic%20separation%20problem%20using%20MINLP%20methods&rft.jtitle=Computers%20&%20chemical%20engineering&rft.au=Emet,%20Stefan&rft.date=2004-05-01&rft.volume=28&rft.issue=5&rft.spage=673&rft.epage=682&rft.pages=673-682&rft.issn=0098-1354&rft.eissn=1873-4375&rft_id=info:doi/10.1016/j.compchemeng.2004.02.010&rft_dat=%3Cproquest_cross%3E28112669%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c453t-6affab581943ddc93fbad0dd3f5840b65d3ce117fd11bad0f782bdf59636ef8b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28112669&rft_id=info:pmid/&rfr_iscdi=true