Loading…

Laguerre Gaussian mode holography and its application in optical encryption

Holography provides an approach to reconstructing both intensity and phase information, and has many applications for microscopic imaging, optical security, and data storage. Recently, the azimuthal Laguerre-Gaussian (LG) mode index, orbital angular momentum (OAM), has been implemented in holography...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2023-04, Vol.31 (8), p.12922-12931
Main Authors: Zhang, Furong, Kong, Ling-Jun, Zhang, Zhuo, Zhang, Jingfeng, Zhang, Xiangdong
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Holography provides an approach to reconstructing both intensity and phase information, and has many applications for microscopic imaging, optical security, and data storage. Recently, the azimuthal Laguerre-Gaussian (LG) mode index, orbital angular momentum (OAM), has been implemented in holography technologies as an independent degree of freedom for high-security encryption. The radial index (RI) of LG mode, however, has not been implemented as an information carrier in holography. Here we propose and demonstrate the RI holography by using strong RI selectivity in the spatial-frequency domain. Furthermore, the LG holography is realized theoretically and experimentally with the (RI, OAM) spanning from (1, -15) to (7, 15), which leads to a 26bit LG-multiplexing hologram for high-security optical encryption. Based on LG holography, a high-capacity holographic information system can be constructed. In our experiments, a LG-multiplexing holography with a span of 217 independent LG channels has been realized, which is inaccessible at present for the OAM holography.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.488116