Loading…
The performance of parallel matrix algorithms on a broadcast-based architecture
Due to advances in fiber‐optics and very large scale integration (VLSI) technology, interconnection networks which allow multiple simultaneous broadcasts are becoming feasible. This paper summarizes one such multiprocessor architecture called the Simultaneous Optical Multiprocessor Exchange Bus (SOM...
Saved in:
Published in: | Concurrency and computation 2006-03, Vol.18 (3), p.271-303 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Due to advances in fiber‐optics and very large scale integration (VLSI) technology, interconnection networks which allow multiple simultaneous broadcasts are becoming feasible. This paper summarizes one such multiprocessor architecture called the Simultaneous Optical Multiprocessor Exchange Bus (SOME‐Bus). It also presents enhancements to the network interface and the cache and directory controllers which support cache block combining, capture and prefetch, and allow complete overlap of processing time with the communication time due to compulsory misses. The paper uses two fundamental matrix algorithms to characterize the impact of each enhancement on performance. Cache miss analysis and results from the execution of these programs on a SOME‐Bus simulator show that block capture and prefetch combined with an effective block replacement policy succeed in significantly reducing the miss rate due to compulsory misses as the cache size increases, while a similar increase of cache size in traditional architectures leaves the miss rate due to compulsory misses unaffected. Copyright © 2005 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 1532-0626 1532-0634 |
DOI: | 10.1002/cpe.920 |