Loading…
Ultrafast Photocatalytic Detoxification of Mustard Gas Simulants by a Mesoporous Metal-Organic Framework with Dangling Porphyrin Molecules
Developing effective catalysts to degrade chemical warfare agents is of great significance. Herein, a mesoporous MIL-101(Cr) composite material dangled with porphyrin molecules (denote as TCPP@MIL-101(Cr), TCPP = tetra(4-carboxyphenyl)porphyrin) is reported, which can be used as a heterogeneous phot...
Saved in:
Published in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-09, Vol.19 (36), p.e2301050-e2301050 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Developing effective catalysts to degrade chemical warfare agents is of great significance. Herein, a mesoporous MIL-101(Cr) composite material dangled with porphyrin molecules (denote as TCPP@MIL-101(Cr), TCPP = tetra(4-carboxyphenyl)porphyrin) is reported, which can be used as a heterogeneous photocatalyst for detoxification of mustard gas simulants 2-chloroethyl ethyl sulfide (CEES) to 2-chloroethyl ethyl sulfoxide (CEESO) with a half-life of 1 min. The catalytic performance of TCPP@MIL-101(Cr) is comparable to that of homogeneous molecular porphyrin. Mechanistic studies reveal that both
O
and O
are efficiently generated and play vital roles in the oxidation reaction. Gold nanoparticles (AuNPs) are attached to the TCPP@MIL-101(Cr) to further enhance the catalytic activity with a benchmark half-life of 45 s, which is the fastest record so far. A medical mask loaded TCPP@MIL-101(Cr) is fabricated for practical applications, which can selectively photoxidize CEES to CEESO under sunlight and air atmosphere, exhibiting the best degradation performance among the reported fabric-like composite materials. |
---|---|
ISSN: | 1613-6810 1613-6829 |
DOI: | 10.1002/smll.202301050 |