Loading…

Constitutive equations for ionic transport in porous shales

The constitutive coupled equations describing ionic transport in a porous shale are obtained at the scale of a representative elementary volume by volume averaging the local Nernst‐Planck and Stokes equations. The final relationships check the Onsager reciprocity to the first order of perturbation o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research. B. Solid Earth 2004-03, Vol.109 (B3), p.B03208.1-n/a
Main Authors: Revil, A., Leroy, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The constitutive coupled equations describing ionic transport in a porous shale are obtained at the scale of a representative elementary volume by volume averaging the local Nernst‐Planck and Stokes equations. The final relationships check the Onsager reciprocity to the first order of perturbation of the state variables with respect to the thermostatic state. This state is characterized by a modified version of the Donnan equilibrium model, which accounts for the partition of the counterions between the Stern and diffuse Gouy‐Chapman layers. After upscaling the local equations the material properties entering the macroscopic constitutive equations are explicitly related to the porosity of the shale, its cation exchange capacity, and some textural properties such as the electrical cementation exponent entering Archie's law. This new model is then applied to predict the salt filtering and electrodiffusion efficiencies of a shale layer.
ISSN:0148-0227
2156-2202
DOI:10.1029/2003JB002755