Loading…

Bioprocess in‐line monitoring using Raman spectroscopy and Indirect Hard Modeling (IHM): A simple calibration yields a robust model

To increase the process productivity and product quality of bioprocesses, the in‐line monitoring of critical process parameters is highly important. For monitoring substrate, metabolite, and product concentrations, Raman spectroscopy is a commonly used Process Analytical Technology (PAT) tool that c...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology and bioengineering 2023-07, Vol.120 (7), p.1857-1868
Main Authors: Müller, David Heinrich, Flake, Carsten, Brands, Thorsten, Koß, Hans‐Jürgen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3884-170484d72c28ff708e24677357db7547dc84e6a0ee68048156bfbe9e344f46c33
cites cdi_FETCH-LOGICAL-c3884-170484d72c28ff708e24677357db7547dc84e6a0ee68048156bfbe9e344f46c33
container_end_page 1868
container_issue 7
container_start_page 1857
container_title Biotechnology and bioengineering
container_volume 120
creator Müller, David Heinrich
Flake, Carsten
Brands, Thorsten
Koß, Hans‐Jürgen
description To increase the process productivity and product quality of bioprocesses, the in‐line monitoring of critical process parameters is highly important. For monitoring substrate, metabolite, and product concentrations, Raman spectroscopy is a commonly used Process Analytical Technology (PAT) tool that can be applied in‐situ and non‐invasively. However, evaluating bioprocess Raman spectra with a robust state‐of‐the‐art statistical model requires effortful model calibration. In the present study, we in‐line monitored a glucose to ethanol fermentation by Saccharomyces cerevisiae (S. cerevisiae) using Raman spectroscopy in combination with the physics‐based Indirect Hard Modeling (IHM) and showed successfully that IHM is an alternative to statistical models with significantly lower calibration effort. The IHM prediction model was developed and calibrated with only 16 Raman spectra in total, which did not include any process spectra. Nevertheless, IHM's root mean square errors of prediction (RMSEPs) for glucose (3.68 g/L) and ethanol (1.69 g/L) were comparable to the prediction quality of similar studies that used statistical models calibrated with several calibration batches. Despite our simple calibration, we succeeded in developing a robust model for evaluating bioprocess Raman spectra. Indirect Hard Modeling (IHM) as alternative to statistical models for evaluating bioprocess Raman spectra with significantly reduced calibration effort.
doi_str_mv 10.1002/bit.28424
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2812506202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825374656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3884-170484d72c28ff708e24677357db7547dc84e6a0ee68048156bfbe9e344f46c33</originalsourceid><addsrcrecordid>eNp10T9P3DAYBnALtYLrlYEvUFnqAkPAcRzb1w0QcCdxqlTROXLsN5WRY6d2InQbS_d-Rj5JfRx0QGKJFevnx38ehI5KcloSQs9aO55SySjbQ7OSLERB6IJ8QDNCCC-qekEP0KeU7vOvkJzvo4NKlJwTKmfoz4UNQwwaUsLWPz3-ddYD7oO3Y4jW_8JT2n5_qF55nAbQYwxJh2GDlTd45Y2NeQ4vVTR4HQy4rT5eLdcn3_A5TrYfHGCtnG2jGm3weGPBmYQVjqGd0pi3yos-o4-dcgkOX8Y5-nl9dXe5LG6_36wuz28LXUnJilIQJpkRVFPZdYJIoIwLUdXCtKJmwmjJgCsCwGWWZc3broUFVIx1jOuqmqPjXW6-8u8J0tj0NmlwTnkIU2qoLGlNOCU0069v6H2Yos-ny4rWlWC85lmd7JTOz5IidM0Qba_ipilJs-2myd00z91k--UlcWp7MP_laxkZnO3Ag3WweT-puVjd7SL_AVHqmMM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825374656</pqid></control><display><type>article</type><title>Bioprocess in‐line monitoring using Raman spectroscopy and Indirect Hard Modeling (IHM): A simple calibration yields a robust model</title><source>Wiley</source><creator>Müller, David Heinrich ; Flake, Carsten ; Brands, Thorsten ; Koß, Hans‐Jürgen</creator><creatorcontrib>Müller, David Heinrich ; Flake, Carsten ; Brands, Thorsten ; Koß, Hans‐Jürgen</creatorcontrib><description>To increase the process productivity and product quality of bioprocesses, the in‐line monitoring of critical process parameters is highly important. For monitoring substrate, metabolite, and product concentrations, Raman spectroscopy is a commonly used Process Analytical Technology (PAT) tool that can be applied in‐situ and non‐invasively. However, evaluating bioprocess Raman spectra with a robust state‐of‐the‐art statistical model requires effortful model calibration. In the present study, we in‐line monitored a glucose to ethanol fermentation by Saccharomyces cerevisiae (S. cerevisiae) using Raman spectroscopy in combination with the physics‐based Indirect Hard Modeling (IHM) and showed successfully that IHM is an alternative to statistical models with significantly lower calibration effort. The IHM prediction model was developed and calibrated with only 16 Raman spectra in total, which did not include any process spectra. Nevertheless, IHM's root mean square errors of prediction (RMSEPs) for glucose (3.68 g/L) and ethanol (1.69 g/L) were comparable to the prediction quality of similar studies that used statistical models calibrated with several calibration batches. Despite our simple calibration, we succeeded in developing a robust model for evaluating bioprocess Raman spectra. Indirect Hard Modeling (IHM) as alternative to statistical models for evaluating bioprocess Raman spectra with significantly reduced calibration effort.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.28424</identifier><identifier>PMID: 37166028</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>bioprocess ; Calibration ; Ethanol ; Fermentation ; Glucose ; Indirect Hard Modeling (IHM) ; in‐line monitoring ; Mathematical models ; Metabolites ; Monitoring ; Prediction models ; Process Analytical Technology (PAT) ; Process parameters ; Raman spectra ; Raman spectroscopy ; Robustness ; Saccharomyces cerevisiae ; Spectroscopy ; Spectrum analysis ; Statistical analysis ; Statistical models ; Substrates ; Technology assessment ; Yeast</subject><ispartof>Biotechnology and bioengineering, 2023-07, Vol.120 (7), p.1857-1868</ispartof><rights>2023 The Authors. published by Wiley Periodicals LLC.</rights><rights>2023 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals LLC.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3884-170484d72c28ff708e24677357db7547dc84e6a0ee68048156bfbe9e344f46c33</citedby><cites>FETCH-LOGICAL-c3884-170484d72c28ff708e24677357db7547dc84e6a0ee68048156bfbe9e344f46c33</cites><orcidid>0000-0002-4761-2640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37166028$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Müller, David Heinrich</creatorcontrib><creatorcontrib>Flake, Carsten</creatorcontrib><creatorcontrib>Brands, Thorsten</creatorcontrib><creatorcontrib>Koß, Hans‐Jürgen</creatorcontrib><title>Bioprocess in‐line monitoring using Raman spectroscopy and Indirect Hard Modeling (IHM): A simple calibration yields a robust model</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>To increase the process productivity and product quality of bioprocesses, the in‐line monitoring of critical process parameters is highly important. For monitoring substrate, metabolite, and product concentrations, Raman spectroscopy is a commonly used Process Analytical Technology (PAT) tool that can be applied in‐situ and non‐invasively. However, evaluating bioprocess Raman spectra with a robust state‐of‐the‐art statistical model requires effortful model calibration. In the present study, we in‐line monitored a glucose to ethanol fermentation by Saccharomyces cerevisiae (S. cerevisiae) using Raman spectroscopy in combination with the physics‐based Indirect Hard Modeling (IHM) and showed successfully that IHM is an alternative to statistical models with significantly lower calibration effort. The IHM prediction model was developed and calibrated with only 16 Raman spectra in total, which did not include any process spectra. Nevertheless, IHM's root mean square errors of prediction (RMSEPs) for glucose (3.68 g/L) and ethanol (1.69 g/L) were comparable to the prediction quality of similar studies that used statistical models calibrated with several calibration batches. Despite our simple calibration, we succeeded in developing a robust model for evaluating bioprocess Raman spectra. Indirect Hard Modeling (IHM) as alternative to statistical models for evaluating bioprocess Raman spectra with significantly reduced calibration effort.</description><subject>bioprocess</subject><subject>Calibration</subject><subject>Ethanol</subject><subject>Fermentation</subject><subject>Glucose</subject><subject>Indirect Hard Modeling (IHM)</subject><subject>in‐line monitoring</subject><subject>Mathematical models</subject><subject>Metabolites</subject><subject>Monitoring</subject><subject>Prediction models</subject><subject>Process Analytical Technology (PAT)</subject><subject>Process parameters</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Robustness</subject><subject>Saccharomyces cerevisiae</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Substrates</subject><subject>Technology assessment</subject><subject>Yeast</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10T9P3DAYBnALtYLrlYEvUFnqAkPAcRzb1w0QcCdxqlTROXLsN5WRY6d2InQbS_d-Rj5JfRx0QGKJFevnx38ehI5KcloSQs9aO55SySjbQ7OSLERB6IJ8QDNCCC-qekEP0KeU7vOvkJzvo4NKlJwTKmfoz4UNQwwaUsLWPz3-ddYD7oO3Y4jW_8JT2n5_qF55nAbQYwxJh2GDlTd45Y2NeQ4vVTR4HQy4rT5eLdcn3_A5TrYfHGCtnG2jGm3weGPBmYQVjqGd0pi3yos-o4-dcgkOX8Y5-nl9dXe5LG6_36wuz28LXUnJilIQJpkRVFPZdYJIoIwLUdXCtKJmwmjJgCsCwGWWZc3broUFVIx1jOuqmqPjXW6-8u8J0tj0NmlwTnkIU2qoLGlNOCU0069v6H2Yos-ny4rWlWC85lmd7JTOz5IidM0Qba_ipilJs-2myd00z91k--UlcWp7MP_laxkZnO3Ag3WweT-puVjd7SL_AVHqmMM</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Müller, David Heinrich</creator><creator>Flake, Carsten</creator><creator>Brands, Thorsten</creator><creator>Koß, Hans‐Jürgen</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4761-2640</orcidid></search><sort><creationdate>202307</creationdate><title>Bioprocess in‐line monitoring using Raman spectroscopy and Indirect Hard Modeling (IHM): A simple calibration yields a robust model</title><author>Müller, David Heinrich ; Flake, Carsten ; Brands, Thorsten ; Koß, Hans‐Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3884-170484d72c28ff708e24677357db7547dc84e6a0ee68048156bfbe9e344f46c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>bioprocess</topic><topic>Calibration</topic><topic>Ethanol</topic><topic>Fermentation</topic><topic>Glucose</topic><topic>Indirect Hard Modeling (IHM)</topic><topic>in‐line monitoring</topic><topic>Mathematical models</topic><topic>Metabolites</topic><topic>Monitoring</topic><topic>Prediction models</topic><topic>Process Analytical Technology (PAT)</topic><topic>Process parameters</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Robustness</topic><topic>Saccharomyces cerevisiae</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Substrates</topic><topic>Technology assessment</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller, David Heinrich</creatorcontrib><creatorcontrib>Flake, Carsten</creatorcontrib><creatorcontrib>Brands, Thorsten</creatorcontrib><creatorcontrib>Koß, Hans‐Jürgen</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller, David Heinrich</au><au>Flake, Carsten</au><au>Brands, Thorsten</au><au>Koß, Hans‐Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioprocess in‐line monitoring using Raman spectroscopy and Indirect Hard Modeling (IHM): A simple calibration yields a robust model</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2023-07</date><risdate>2023</risdate><volume>120</volume><issue>7</issue><spage>1857</spage><epage>1868</epage><pages>1857-1868</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><abstract>To increase the process productivity and product quality of bioprocesses, the in‐line monitoring of critical process parameters is highly important. For monitoring substrate, metabolite, and product concentrations, Raman spectroscopy is a commonly used Process Analytical Technology (PAT) tool that can be applied in‐situ and non‐invasively. However, evaluating bioprocess Raman spectra with a robust state‐of‐the‐art statistical model requires effortful model calibration. In the present study, we in‐line monitored a glucose to ethanol fermentation by Saccharomyces cerevisiae (S. cerevisiae) using Raman spectroscopy in combination with the physics‐based Indirect Hard Modeling (IHM) and showed successfully that IHM is an alternative to statistical models with significantly lower calibration effort. The IHM prediction model was developed and calibrated with only 16 Raman spectra in total, which did not include any process spectra. Nevertheless, IHM's root mean square errors of prediction (RMSEPs) for glucose (3.68 g/L) and ethanol (1.69 g/L) were comparable to the prediction quality of similar studies that used statistical models calibrated with several calibration batches. Despite our simple calibration, we succeeded in developing a robust model for evaluating bioprocess Raman spectra. Indirect Hard Modeling (IHM) as alternative to statistical models for evaluating bioprocess Raman spectra with significantly reduced calibration effort.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37166028</pmid><doi>10.1002/bit.28424</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4761-2640</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2023-07, Vol.120 (7), p.1857-1868
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_2812506202
source Wiley
subjects bioprocess
Calibration
Ethanol
Fermentation
Glucose
Indirect Hard Modeling (IHM)
in‐line monitoring
Mathematical models
Metabolites
Monitoring
Prediction models
Process Analytical Technology (PAT)
Process parameters
Raman spectra
Raman spectroscopy
Robustness
Saccharomyces cerevisiae
Spectroscopy
Spectrum analysis
Statistical analysis
Statistical models
Substrates
Technology assessment
Yeast
title Bioprocess in‐line monitoring using Raman spectroscopy and Indirect Hard Modeling (IHM): A simple calibration yields a robust model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A44%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioprocess%20in%E2%80%90line%20monitoring%20using%20Raman%20spectroscopy%20and%20Indirect%20Hard%20Modeling%20(IHM):%20A%20simple%20calibration%20yields%20a%20robust%20model&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=M%C3%BCller,%20David%20Heinrich&rft.date=2023-07&rft.volume=120&rft.issue=7&rft.spage=1857&rft.epage=1868&rft.pages=1857-1868&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.28424&rft_dat=%3Cproquest_cross%3E2825374656%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3884-170484d72c28ff708e24677357db7547dc84e6a0ee68048156bfbe9e344f46c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2825374656&rft_id=info:pmid/37166028&rfr_iscdi=true