Loading…
Bioprocess in‐line monitoring using Raman spectroscopy and Indirect Hard Modeling (IHM): A simple calibration yields a robust model
To increase the process productivity and product quality of bioprocesses, the in‐line monitoring of critical process parameters is highly important. For monitoring substrate, metabolite, and product concentrations, Raman spectroscopy is a commonly used Process Analytical Technology (PAT) tool that c...
Saved in:
Published in: | Biotechnology and bioengineering 2023-07, Vol.120 (7), p.1857-1868 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3884-170484d72c28ff708e24677357db7547dc84e6a0ee68048156bfbe9e344f46c33 |
---|---|
cites | cdi_FETCH-LOGICAL-c3884-170484d72c28ff708e24677357db7547dc84e6a0ee68048156bfbe9e344f46c33 |
container_end_page | 1868 |
container_issue | 7 |
container_start_page | 1857 |
container_title | Biotechnology and bioengineering |
container_volume | 120 |
creator | Müller, David Heinrich Flake, Carsten Brands, Thorsten Koß, Hans‐Jürgen |
description | To increase the process productivity and product quality of bioprocesses, the in‐line monitoring of critical process parameters is highly important. For monitoring substrate, metabolite, and product concentrations, Raman spectroscopy is a commonly used Process Analytical Technology (PAT) tool that can be applied in‐situ and non‐invasively. However, evaluating bioprocess Raman spectra with a robust state‐of‐the‐art statistical model requires effortful model calibration. In the present study, we in‐line monitored a glucose to ethanol fermentation by Saccharomyces cerevisiae (S. cerevisiae) using Raman spectroscopy in combination with the physics‐based Indirect Hard Modeling (IHM) and showed successfully that IHM is an alternative to statistical models with significantly lower calibration effort. The IHM prediction model was developed and calibrated with only 16 Raman spectra in total, which did not include any process spectra. Nevertheless, IHM's root mean square errors of prediction (RMSEPs) for glucose (3.68 g/L) and ethanol (1.69 g/L) were comparable to the prediction quality of similar studies that used statistical models calibrated with several calibration batches. Despite our simple calibration, we succeeded in developing a robust model for evaluating bioprocess Raman spectra.
Indirect Hard Modeling (IHM) as alternative to statistical models for evaluating bioprocess Raman spectra with significantly reduced calibration effort. |
doi_str_mv | 10.1002/bit.28424 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2812506202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825374656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3884-170484d72c28ff708e24677357db7547dc84e6a0ee68048156bfbe9e344f46c33</originalsourceid><addsrcrecordid>eNp10T9P3DAYBnALtYLrlYEvUFnqAkPAcRzb1w0QcCdxqlTROXLsN5WRY6d2InQbS_d-Rj5JfRx0QGKJFevnx38ehI5KcloSQs9aO55SySjbQ7OSLERB6IJ8QDNCCC-qekEP0KeU7vOvkJzvo4NKlJwTKmfoz4UNQwwaUsLWPz3-ddYD7oO3Y4jW_8JT2n5_qF55nAbQYwxJh2GDlTd45Y2NeQ4vVTR4HQy4rT5eLdcn3_A5TrYfHGCtnG2jGm3weGPBmYQVjqGd0pi3yos-o4-dcgkOX8Y5-nl9dXe5LG6_36wuz28LXUnJilIQJpkRVFPZdYJIoIwLUdXCtKJmwmjJgCsCwGWWZc3broUFVIx1jOuqmqPjXW6-8u8J0tj0NmlwTnkIU2qoLGlNOCU0069v6H2Yos-ny4rWlWC85lmd7JTOz5IidM0Qba_ipilJs-2myd00z91k--UlcWp7MP_laxkZnO3Ag3WweT-puVjd7SL_AVHqmMM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825374656</pqid></control><display><type>article</type><title>Bioprocess in‐line monitoring using Raman spectroscopy and Indirect Hard Modeling (IHM): A simple calibration yields a robust model</title><source>Wiley</source><creator>Müller, David Heinrich ; Flake, Carsten ; Brands, Thorsten ; Koß, Hans‐Jürgen</creator><creatorcontrib>Müller, David Heinrich ; Flake, Carsten ; Brands, Thorsten ; Koß, Hans‐Jürgen</creatorcontrib><description>To increase the process productivity and product quality of bioprocesses, the in‐line monitoring of critical process parameters is highly important. For monitoring substrate, metabolite, and product concentrations, Raman spectroscopy is a commonly used Process Analytical Technology (PAT) tool that can be applied in‐situ and non‐invasively. However, evaluating bioprocess Raman spectra with a robust state‐of‐the‐art statistical model requires effortful model calibration. In the present study, we in‐line monitored a glucose to ethanol fermentation by Saccharomyces cerevisiae (S. cerevisiae) using Raman spectroscopy in combination with the physics‐based Indirect Hard Modeling (IHM) and showed successfully that IHM is an alternative to statistical models with significantly lower calibration effort. The IHM prediction model was developed and calibrated with only 16 Raman spectra in total, which did not include any process spectra. Nevertheless, IHM's root mean square errors of prediction (RMSEPs) for glucose (3.68 g/L) and ethanol (1.69 g/L) were comparable to the prediction quality of similar studies that used statistical models calibrated with several calibration batches. Despite our simple calibration, we succeeded in developing a robust model for evaluating bioprocess Raman spectra.
Indirect Hard Modeling (IHM) as alternative to statistical models for evaluating bioprocess Raman spectra with significantly reduced calibration effort.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.28424</identifier><identifier>PMID: 37166028</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>bioprocess ; Calibration ; Ethanol ; Fermentation ; Glucose ; Indirect Hard Modeling (IHM) ; in‐line monitoring ; Mathematical models ; Metabolites ; Monitoring ; Prediction models ; Process Analytical Technology (PAT) ; Process parameters ; Raman spectra ; Raman spectroscopy ; Robustness ; Saccharomyces cerevisiae ; Spectroscopy ; Spectrum analysis ; Statistical analysis ; Statistical models ; Substrates ; Technology assessment ; Yeast</subject><ispartof>Biotechnology and bioengineering, 2023-07, Vol.120 (7), p.1857-1868</ispartof><rights>2023 The Authors. published by Wiley Periodicals LLC.</rights><rights>2023 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals LLC.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3884-170484d72c28ff708e24677357db7547dc84e6a0ee68048156bfbe9e344f46c33</citedby><cites>FETCH-LOGICAL-c3884-170484d72c28ff708e24677357db7547dc84e6a0ee68048156bfbe9e344f46c33</cites><orcidid>0000-0002-4761-2640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37166028$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Müller, David Heinrich</creatorcontrib><creatorcontrib>Flake, Carsten</creatorcontrib><creatorcontrib>Brands, Thorsten</creatorcontrib><creatorcontrib>Koß, Hans‐Jürgen</creatorcontrib><title>Bioprocess in‐line monitoring using Raman spectroscopy and Indirect Hard Modeling (IHM): A simple calibration yields a robust model</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>To increase the process productivity and product quality of bioprocesses, the in‐line monitoring of critical process parameters is highly important. For monitoring substrate, metabolite, and product concentrations, Raman spectroscopy is a commonly used Process Analytical Technology (PAT) tool that can be applied in‐situ and non‐invasively. However, evaluating bioprocess Raman spectra with a robust state‐of‐the‐art statistical model requires effortful model calibration. In the present study, we in‐line monitored a glucose to ethanol fermentation by Saccharomyces cerevisiae (S. cerevisiae) using Raman spectroscopy in combination with the physics‐based Indirect Hard Modeling (IHM) and showed successfully that IHM is an alternative to statistical models with significantly lower calibration effort. The IHM prediction model was developed and calibrated with only 16 Raman spectra in total, which did not include any process spectra. Nevertheless, IHM's root mean square errors of prediction (RMSEPs) for glucose (3.68 g/L) and ethanol (1.69 g/L) were comparable to the prediction quality of similar studies that used statistical models calibrated with several calibration batches. Despite our simple calibration, we succeeded in developing a robust model for evaluating bioprocess Raman spectra.
Indirect Hard Modeling (IHM) as alternative to statistical models for evaluating bioprocess Raman spectra with significantly reduced calibration effort.</description><subject>bioprocess</subject><subject>Calibration</subject><subject>Ethanol</subject><subject>Fermentation</subject><subject>Glucose</subject><subject>Indirect Hard Modeling (IHM)</subject><subject>in‐line monitoring</subject><subject>Mathematical models</subject><subject>Metabolites</subject><subject>Monitoring</subject><subject>Prediction models</subject><subject>Process Analytical Technology (PAT)</subject><subject>Process parameters</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Robustness</subject><subject>Saccharomyces cerevisiae</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Substrates</subject><subject>Technology assessment</subject><subject>Yeast</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10T9P3DAYBnALtYLrlYEvUFnqAkPAcRzb1w0QcCdxqlTROXLsN5WRY6d2InQbS_d-Rj5JfRx0QGKJFevnx38ehI5KcloSQs9aO55SySjbQ7OSLERB6IJ8QDNCCC-qekEP0KeU7vOvkJzvo4NKlJwTKmfoz4UNQwwaUsLWPz3-ddYD7oO3Y4jW_8JT2n5_qF55nAbQYwxJh2GDlTd45Y2NeQ4vVTR4HQy4rT5eLdcn3_A5TrYfHGCtnG2jGm3weGPBmYQVjqGd0pi3yos-o4-dcgkOX8Y5-nl9dXe5LG6_36wuz28LXUnJilIQJpkRVFPZdYJIoIwLUdXCtKJmwmjJgCsCwGWWZc3broUFVIx1jOuqmqPjXW6-8u8J0tj0NmlwTnkIU2qoLGlNOCU0069v6H2Yos-ny4rWlWC85lmd7JTOz5IidM0Qba_ipilJs-2myd00z91k--UlcWp7MP_laxkZnO3Ag3WweT-puVjd7SL_AVHqmMM</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Müller, David Heinrich</creator><creator>Flake, Carsten</creator><creator>Brands, Thorsten</creator><creator>Koß, Hans‐Jürgen</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4761-2640</orcidid></search><sort><creationdate>202307</creationdate><title>Bioprocess in‐line monitoring using Raman spectroscopy and Indirect Hard Modeling (IHM): A simple calibration yields a robust model</title><author>Müller, David Heinrich ; Flake, Carsten ; Brands, Thorsten ; Koß, Hans‐Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3884-170484d72c28ff708e24677357db7547dc84e6a0ee68048156bfbe9e344f46c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>bioprocess</topic><topic>Calibration</topic><topic>Ethanol</topic><topic>Fermentation</topic><topic>Glucose</topic><topic>Indirect Hard Modeling (IHM)</topic><topic>in‐line monitoring</topic><topic>Mathematical models</topic><topic>Metabolites</topic><topic>Monitoring</topic><topic>Prediction models</topic><topic>Process Analytical Technology (PAT)</topic><topic>Process parameters</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Robustness</topic><topic>Saccharomyces cerevisiae</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Substrates</topic><topic>Technology assessment</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller, David Heinrich</creatorcontrib><creatorcontrib>Flake, Carsten</creatorcontrib><creatorcontrib>Brands, Thorsten</creatorcontrib><creatorcontrib>Koß, Hans‐Jürgen</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller, David Heinrich</au><au>Flake, Carsten</au><au>Brands, Thorsten</au><au>Koß, Hans‐Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioprocess in‐line monitoring using Raman spectroscopy and Indirect Hard Modeling (IHM): A simple calibration yields a robust model</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2023-07</date><risdate>2023</risdate><volume>120</volume><issue>7</issue><spage>1857</spage><epage>1868</epage><pages>1857-1868</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><abstract>To increase the process productivity and product quality of bioprocesses, the in‐line monitoring of critical process parameters is highly important. For monitoring substrate, metabolite, and product concentrations, Raman spectroscopy is a commonly used Process Analytical Technology (PAT) tool that can be applied in‐situ and non‐invasively. However, evaluating bioprocess Raman spectra with a robust state‐of‐the‐art statistical model requires effortful model calibration. In the present study, we in‐line monitored a glucose to ethanol fermentation by Saccharomyces cerevisiae (S. cerevisiae) using Raman spectroscopy in combination with the physics‐based Indirect Hard Modeling (IHM) and showed successfully that IHM is an alternative to statistical models with significantly lower calibration effort. The IHM prediction model was developed and calibrated with only 16 Raman spectra in total, which did not include any process spectra. Nevertheless, IHM's root mean square errors of prediction (RMSEPs) for glucose (3.68 g/L) and ethanol (1.69 g/L) were comparable to the prediction quality of similar studies that used statistical models calibrated with several calibration batches. Despite our simple calibration, we succeeded in developing a robust model for evaluating bioprocess Raman spectra.
Indirect Hard Modeling (IHM) as alternative to statistical models for evaluating bioprocess Raman spectra with significantly reduced calibration effort.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37166028</pmid><doi>10.1002/bit.28424</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4761-2640</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2023-07, Vol.120 (7), p.1857-1868 |
issn | 0006-3592 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_2812506202 |
source | Wiley |
subjects | bioprocess Calibration Ethanol Fermentation Glucose Indirect Hard Modeling (IHM) in‐line monitoring Mathematical models Metabolites Monitoring Prediction models Process Analytical Technology (PAT) Process parameters Raman spectra Raman spectroscopy Robustness Saccharomyces cerevisiae Spectroscopy Spectrum analysis Statistical analysis Statistical models Substrates Technology assessment Yeast |
title | Bioprocess in‐line monitoring using Raman spectroscopy and Indirect Hard Modeling (IHM): A simple calibration yields a robust model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A44%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioprocess%20in%E2%80%90line%20monitoring%20using%20Raman%20spectroscopy%20and%20Indirect%20Hard%20Modeling%20(IHM):%20A%20simple%20calibration%20yields%20a%20robust%20model&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=M%C3%BCller,%20David%20Heinrich&rft.date=2023-07&rft.volume=120&rft.issue=7&rft.spage=1857&rft.epage=1868&rft.pages=1857-1868&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.28424&rft_dat=%3Cproquest_cross%3E2825374656%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3884-170484d72c28ff708e24677357db7547dc84e6a0ee68048156bfbe9e344f46c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2825374656&rft_id=info:pmid/37166028&rfr_iscdi=true |