Loading…

The stress anomaly in FeAl–Fe3Al alloys

The anomalous stress peak observed near 500-600 DGC in Fe-Al alloys has now been convincingly explained using a model of hardening by immobile thermal vacancies on the lower temperature side of the peak and the loss of hardening as these vacancies become mobile at higher temperatures. The large numb...

Full description

Saved in:
Bibliographic Details
Published in:Intermetallics 2005-12, Vol.13 (12), p.1269-1274
Main Authors: Morris, D.G., Muñoz-Morris, M.A.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c286t-9d163f6f630ad75f647dc8353cf81270eb243968040bae54504c73e799f890b93
cites cdi_FETCH-LOGICAL-c286t-9d163f6f630ad75f647dc8353cf81270eb243968040bae54504c73e799f890b93
container_end_page 1274
container_issue 12
container_start_page 1269
container_title Intermetallics
container_volume 13
creator Morris, D.G.
Muñoz-Morris, M.A.
description The anomalous stress peak observed near 500-600 DGC in Fe-Al alloys has now been convincingly explained using a model of hardening by immobile thermal vacancies on the lower temperature side of the peak and the loss of hardening as these vacancies become mobile at higher temperatures. The large numbers of vacancies required for such hardening are associated with compositions close to stoichiometry, i.e. 40-50%Al, raising the question of whether such a vacancy hardening model can be adopted for Fe3Al alloys, which show a similar stress peak anomaly. Examination of data on vacancy formation over the entire range of composition, Fe-Fe3Al-FeAl, shows that, indeed, a vacancy hardening model appears capable of explaining the stress anomaly for both FeAl and Fe3Al.
doi_str_mv 10.1016/j.intermet.2004.08.012
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28126069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28126069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-9d163f6f630ad75f647dc8353cf81270eb243968040bae54504c73e799f890b93</originalsourceid><addsrcrecordid>eNo10L1OwzAYhWEPIFEKt4AyITEkfLYT_4xVRQCpEkuZLSf5LBI5SbHTIRv3wB1yJTQqTGd5dYaHkDsKGQUqHrusHSYMPU4ZA8gzUBlQdkFWoIVItdTFFbmOsQOgEnixIg_7D0ziFDDGxA5jb_2ctENS4sb_fH2XyDc-sd6Pc7whl876iLd_uybv5dN--5Lu3p5ft5tdWjMlplQ3VHAnnOBgG1k4kcumVrzgtVOUScCK5VwLBTlUFou8gLyWHKXWTmmoNF-T-_PvIYyfR4yT6dtYo_d2wPEYDTvdCBBLKM5hHcYYAzpzCG1vw2womEXDdOZfwywaBpQ5afBfTQhWxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28126069</pqid></control><display><type>article</type><title>The stress anomaly in FeAl–Fe3Al alloys</title><source>Elsevier</source><creator>Morris, D.G. ; Muñoz-Morris, M.A.</creator><creatorcontrib>Morris, D.G. ; Muñoz-Morris, M.A.</creatorcontrib><description>The anomalous stress peak observed near 500-600 DGC in Fe-Al alloys has now been convincingly explained using a model of hardening by immobile thermal vacancies on the lower temperature side of the peak and the loss of hardening as these vacancies become mobile at higher temperatures. The large numbers of vacancies required for such hardening are associated with compositions close to stoichiometry, i.e. 40-50%Al, raising the question of whether such a vacancy hardening model can be adopted for Fe3Al alloys, which show a similar stress peak anomaly. Examination of data on vacancy formation over the entire range of composition, Fe-Fe3Al-FeAl, shows that, indeed, a vacancy hardening model appears capable of explaining the stress anomaly for both FeAl and Fe3Al.</description><identifier>ISSN: 0966-9795</identifier><identifier>DOI: 10.1016/j.intermet.2004.08.012</identifier><language>eng</language><ispartof>Intermetallics, 2005-12, Vol.13 (12), p.1269-1274</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-9d163f6f630ad75f647dc8353cf81270eb243968040bae54504c73e799f890b93</citedby><cites>FETCH-LOGICAL-c286t-9d163f6f630ad75f647dc8353cf81270eb243968040bae54504c73e799f890b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Morris, D.G.</creatorcontrib><creatorcontrib>Muñoz-Morris, M.A.</creatorcontrib><title>The stress anomaly in FeAl–Fe3Al alloys</title><title>Intermetallics</title><description>The anomalous stress peak observed near 500-600 DGC in Fe-Al alloys has now been convincingly explained using a model of hardening by immobile thermal vacancies on the lower temperature side of the peak and the loss of hardening as these vacancies become mobile at higher temperatures. The large numbers of vacancies required for such hardening are associated with compositions close to stoichiometry, i.e. 40-50%Al, raising the question of whether such a vacancy hardening model can be adopted for Fe3Al alloys, which show a similar stress peak anomaly. Examination of data on vacancy formation over the entire range of composition, Fe-Fe3Al-FeAl, shows that, indeed, a vacancy hardening model appears capable of explaining the stress anomaly for both FeAl and Fe3Al.</description><issn>0966-9795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNo10L1OwzAYhWEPIFEKt4AyITEkfLYT_4xVRQCpEkuZLSf5LBI5SbHTIRv3wB1yJTQqTGd5dYaHkDsKGQUqHrusHSYMPU4ZA8gzUBlQdkFWoIVItdTFFbmOsQOgEnixIg_7D0ziFDDGxA5jb_2ctENS4sb_fH2XyDc-sd6Pc7whl876iLd_uybv5dN--5Lu3p5ft5tdWjMlplQ3VHAnnOBgG1k4kcumVrzgtVOUScCK5VwLBTlUFou8gLyWHKXWTmmoNF-T-_PvIYyfR4yT6dtYo_d2wPEYDTvdCBBLKM5hHcYYAzpzCG1vw2womEXDdOZfwywaBpQ5afBfTQhWxg</recordid><startdate>200512</startdate><enddate>200512</enddate><creator>Morris, D.G.</creator><creator>Muñoz-Morris, M.A.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>200512</creationdate><title>The stress anomaly in FeAl–Fe3Al alloys</title><author>Morris, D.G. ; Muñoz-Morris, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-9d163f6f630ad75f647dc8353cf81270eb243968040bae54504c73e799f890b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morris, D.G.</creatorcontrib><creatorcontrib>Muñoz-Morris, M.A.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Intermetallics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morris, D.G.</au><au>Muñoz-Morris, M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The stress anomaly in FeAl–Fe3Al alloys</atitle><jtitle>Intermetallics</jtitle><date>2005-12</date><risdate>2005</risdate><volume>13</volume><issue>12</issue><spage>1269</spage><epage>1274</epage><pages>1269-1274</pages><issn>0966-9795</issn><abstract>The anomalous stress peak observed near 500-600 DGC in Fe-Al alloys has now been convincingly explained using a model of hardening by immobile thermal vacancies on the lower temperature side of the peak and the loss of hardening as these vacancies become mobile at higher temperatures. The large numbers of vacancies required for such hardening are associated with compositions close to stoichiometry, i.e. 40-50%Al, raising the question of whether such a vacancy hardening model can be adopted for Fe3Al alloys, which show a similar stress peak anomaly. Examination of data on vacancy formation over the entire range of composition, Fe-Fe3Al-FeAl, shows that, indeed, a vacancy hardening model appears capable of explaining the stress anomaly for both FeAl and Fe3Al.</abstract><doi>10.1016/j.intermet.2004.08.012</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0966-9795
ispartof Intermetallics, 2005-12, Vol.13 (12), p.1269-1274
issn 0966-9795
language eng
recordid cdi_proquest_miscellaneous_28126069
source Elsevier
title The stress anomaly in FeAl–Fe3Al alloys
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A01%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20stress%20anomaly%20in%20FeAl%E2%80%93Fe3Al%20alloys&rft.jtitle=Intermetallics&rft.au=Morris,%20D.G.&rft.date=2005-12&rft.volume=13&rft.issue=12&rft.spage=1269&rft.epage=1274&rft.pages=1269-1274&rft.issn=0966-9795&rft_id=info:doi/10.1016/j.intermet.2004.08.012&rft_dat=%3Cproquest_cross%3E28126069%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c286t-9d163f6f630ad75f647dc8353cf81270eb243968040bae54504c73e799f890b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28126069&rft_id=info:pmid/&rfr_iscdi=true