Loading…
Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process
Particles/substrate interactions during the cold-gas dynamic-spray deposition process are studied using a dynamic axisymmetric thermo-mechanical finite element analysis. In addition, the particles/substrate bonding mechanism has been investigated using a one-dimensional thermo-mechanical model for a...
Saved in:
Published in: | Materials in engineering 2004-12, Vol.25 (8), p.681-688 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Particles/substrate interactions during the cold-gas dynamic-spray deposition process are studied using a dynamic axisymmetric thermo-mechanical finite element analysis. In addition, the particles/substrate bonding mechanism has been investigated using a one-dimensional thermo-mechanical model for adiabatic strain softening and the accompanying adiabatic shear localization. The results obtained show that the minimal impact particles velocity needed to produce shear localization at the particles/substrate interface correlates quite well with the critical velocity for particles deposition by the cold-gas dynamic-spray process in a number of metallic materials. This finding suggests that the onset of adiabatic shear instability in the particles/substrate interfacial region plays an important role in promoting particle/substrate adhesion and, thus, particles/substrate bonding during the cold-gas dynamic-spray process. |
---|---|
ISSN: | 0261-3069 |
DOI: | 10.1016/j.matdes.2004.03.008 |