Loading…
Coaxial 3D Printing of Zeolite‐Based Core–Shell Monolithic Cu‐SSZ‐13@SiO2 Catalysts for Diesel Exhaust Treatment
Core–shell catalysts with functional shells can increase the activity and stability of the catalysts in selective catalytic reduction of NOx with ammoniax. However, the conventional approaches based on multistep fabrication for core–shell structures encounter persistent restrictions regarding strict...
Saved in:
Published in: | Advanced materials (Weinheim) 2024-04, Vol.36 (17), p.e2302912-n/a |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | n/a |
container_issue | 17 |
container_start_page | e2302912 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Wei, Yingzhen Wang, Shuang Chen, Mengyang Han, Jinfeng Yang, Guoju Wang, Qifei Di, Jiancheng Li, Hongli Wu, Wenzheng Yu, Jihong |
description | Core–shell catalysts with functional shells can increase the activity and stability of the catalysts in selective catalytic reduction of NOx with ammoniax. However, the conventional approaches based on multistep fabrication for core–shell structures encounter persistent restrictions regarding strict synthesis conditions and limited design flexibility. Herein, a facile coaxial 3D printing strategy is for the first time developed to construct zeolite‐based core–shell monolithic catalysts with interconnected honeycomb structures, in which the hydrophilic noncompact silica serves as shell and Cu‐SSZ‐13 zeolite acts as core. Compared to a Cu‐SSZ‐13 monolith which suffers from the interfacial diffusion, the SiO2 shell layer can increase the accessibility of active sites over Cu‐SSZ‐13@SiO2, resulting in a 10–20% higher NO conversion at200−550 °C under 300 000 cm3 g−1 h−1. Meanwhile, a thicker SiO2 shell enhances the hydrothermal stability of the aged catalyst by inhibiting the dealumination and the formation of CuOx. Other representative monolithic catalysts with different topological zeolites as shell and diverse metal oxides as the core can be also realized by this coaxial 3D printing. This strategy allows multiple porous materials to be directly integrated, which allows for flexible design and fabrication of various core–shell monolithic catalysts with customized functionalities.
A facile coaxial 3D printing strategy is developed to fabricate core–shell Cu‐SSZ‐13@SiO2 catalysts with superior mass transfer efficiency and high hydrothermal stability for NH3‐assisted selective catalytic reduction. This coaxial 3D printing technology allows for the flexible design and construction of zeolite‐based core–shell monoliths with the advantages of easy fabrication, universal applicability, and judicious integration of functional composites. |
doi_str_mv | 10.1002/adma.202302912 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2813556494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2813556494</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3062-f6cc505080d78773d3f8667c3744b788d4164a7df5c7b2f9d1a824fe54401aa53</originalsourceid><addsrcrecordid>eNpdkU1Lw0AQhhdRsH5cPS948RKd_c7erGn9gIpC9eJlWZONXUmzNZtge_MnCP5Df4kpSg9eZniZh2GGB6EjAqcEgJ7ZYm5PKVAGVBO6hQZEUJJw0GIbDUAzkWjJ0120F-MrAGgJcoCWWbBLbyvMRvi-8XXr6xccSvzkQuVb9_3xeWGjK3AWmj58TWeuqvBtqNfTmc9x1vXIdPrUV8LOp_6O4sy2tlrFNuIyNHjkXXQVHi9ntostfmicbeeubg_QTmmr6A7_-j56vBw_ZNfJ5O7qJhtOkgUDSZNS5rkAASkUKlWKFaxMpVQ5U5w_qzQtOJHcqqIUuXqmpS6ITSkvneAciLWC7aOT372LJrx1LrZm7mPef2FrF7poaEqYEJJr3qPH_9DX0DV1f51hwLnWigvZU_qXeveVW5lF4-e2WRkCZm3BrC2YjQUzHN0ON4n9ANF_f9k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044997456</pqid></control><display><type>article</type><title>Coaxial 3D Printing of Zeolite‐Based Core–Shell Monolithic Cu‐SSZ‐13@SiO2 Catalysts for Diesel Exhaust Treatment</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Wei, Yingzhen ; Wang, Shuang ; Chen, Mengyang ; Han, Jinfeng ; Yang, Guoju ; Wang, Qifei ; Di, Jiancheng ; Li, Hongli ; Wu, Wenzheng ; Yu, Jihong</creator><creatorcontrib>Wei, Yingzhen ; Wang, Shuang ; Chen, Mengyang ; Han, Jinfeng ; Yang, Guoju ; Wang, Qifei ; Di, Jiancheng ; Li, Hongli ; Wu, Wenzheng ; Yu, Jihong</creatorcontrib><description>Core–shell catalysts with functional shells can increase the activity and stability of the catalysts in selective catalytic reduction of NOx with ammoniax. However, the conventional approaches based on multistep fabrication for core–shell structures encounter persistent restrictions regarding strict synthesis conditions and limited design flexibility. Herein, a facile coaxial 3D printing strategy is for the first time developed to construct zeolite‐based core–shell monolithic catalysts with interconnected honeycomb structures, in which the hydrophilic noncompact silica serves as shell and Cu‐SSZ‐13 zeolite acts as core. Compared to a Cu‐SSZ‐13 monolith which suffers from the interfacial diffusion, the SiO2 shell layer can increase the accessibility of active sites over Cu‐SSZ‐13@SiO2, resulting in a 10–20% higher NO conversion at200−550 °C under 300 000 cm3 g−1 h−1. Meanwhile, a thicker SiO2 shell enhances the hydrothermal stability of the aged catalyst by inhibiting the dealumination and the formation of CuOx. Other representative monolithic catalysts with different topological zeolites as shell and diverse metal oxides as the core can be also realized by this coaxial 3D printing. This strategy allows multiple porous materials to be directly integrated, which allows for flexible design and fabrication of various core–shell monolithic catalysts with customized functionalities.
A facile coaxial 3D printing strategy is developed to fabricate core–shell Cu‐SSZ‐13@SiO2 catalysts with superior mass transfer efficiency and high hydrothermal stability for NH3‐assisted selective catalytic reduction. This coaxial 3D printing technology allows for the flexible design and construction of zeolite‐based core–shell monoliths with the advantages of easy fabrication, universal applicability, and judicious integration of functional composites.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202302912</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>3-D printers ; Catalysts ; Chemical reduction ; coaxial 3D printing ; Core-shell structure ; Cu‐SSZ‐13 zeolite ; Diffusion layers ; Honeycomb structures ; Metal oxides ; monolithic catalysts ; NH3‐SCR ; Porous materials ; Selective catalytic reduction ; Shell stability ; Silicon dioxide ; Three dimensional printing ; Zeolites</subject><ispartof>Advanced materials (Weinheim), 2024-04, Vol.36 (17), p.e2302912-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1615-5034 ; 0000-0002-6641-3436 ; 0000-0003-4224-9122</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wei, Yingzhen</creatorcontrib><creatorcontrib>Wang, Shuang</creatorcontrib><creatorcontrib>Chen, Mengyang</creatorcontrib><creatorcontrib>Han, Jinfeng</creatorcontrib><creatorcontrib>Yang, Guoju</creatorcontrib><creatorcontrib>Wang, Qifei</creatorcontrib><creatorcontrib>Di, Jiancheng</creatorcontrib><creatorcontrib>Li, Hongli</creatorcontrib><creatorcontrib>Wu, Wenzheng</creatorcontrib><creatorcontrib>Yu, Jihong</creatorcontrib><title>Coaxial 3D Printing of Zeolite‐Based Core–Shell Monolithic Cu‐SSZ‐13@SiO2 Catalysts for Diesel Exhaust Treatment</title><title>Advanced materials (Weinheim)</title><description>Core–shell catalysts with functional shells can increase the activity and stability of the catalysts in selective catalytic reduction of NOx with ammoniax. However, the conventional approaches based on multistep fabrication for core–shell structures encounter persistent restrictions regarding strict synthesis conditions and limited design flexibility. Herein, a facile coaxial 3D printing strategy is for the first time developed to construct zeolite‐based core–shell monolithic catalysts with interconnected honeycomb structures, in which the hydrophilic noncompact silica serves as shell and Cu‐SSZ‐13 zeolite acts as core. Compared to a Cu‐SSZ‐13 monolith which suffers from the interfacial diffusion, the SiO2 shell layer can increase the accessibility of active sites over Cu‐SSZ‐13@SiO2, resulting in a 10–20% higher NO conversion at200−550 °C under 300 000 cm3 g−1 h−1. Meanwhile, a thicker SiO2 shell enhances the hydrothermal stability of the aged catalyst by inhibiting the dealumination and the formation of CuOx. Other representative monolithic catalysts with different topological zeolites as shell and diverse metal oxides as the core can be also realized by this coaxial 3D printing. This strategy allows multiple porous materials to be directly integrated, which allows for flexible design and fabrication of various core–shell monolithic catalysts with customized functionalities.
A facile coaxial 3D printing strategy is developed to fabricate core–shell Cu‐SSZ‐13@SiO2 catalysts with superior mass transfer efficiency and high hydrothermal stability for NH3‐assisted selective catalytic reduction. This coaxial 3D printing technology allows for the flexible design and construction of zeolite‐based core–shell monoliths with the advantages of easy fabrication, universal applicability, and judicious integration of functional composites.</description><subject>3-D printers</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>coaxial 3D printing</subject><subject>Core-shell structure</subject><subject>Cu‐SSZ‐13 zeolite</subject><subject>Diffusion layers</subject><subject>Honeycomb structures</subject><subject>Metal oxides</subject><subject>monolithic catalysts</subject><subject>NH3‐SCR</subject><subject>Porous materials</subject><subject>Selective catalytic reduction</subject><subject>Shell stability</subject><subject>Silicon dioxide</subject><subject>Three dimensional printing</subject><subject>Zeolites</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkU1Lw0AQhhdRsH5cPS948RKd_c7erGn9gIpC9eJlWZONXUmzNZtge_MnCP5Df4kpSg9eZniZh2GGB6EjAqcEgJ7ZYm5PKVAGVBO6hQZEUJJw0GIbDUAzkWjJ0120F-MrAGgJcoCWWbBLbyvMRvi-8XXr6xccSvzkQuVb9_3xeWGjK3AWmj58TWeuqvBtqNfTmc9x1vXIdPrUV8LOp_6O4sy2tlrFNuIyNHjkXXQVHi9ntostfmicbeeubg_QTmmr6A7_-j56vBw_ZNfJ5O7qJhtOkgUDSZNS5rkAASkUKlWKFaxMpVQ5U5w_qzQtOJHcqqIUuXqmpS6ITSkvneAciLWC7aOT372LJrx1LrZm7mPef2FrF7poaEqYEJJr3qPH_9DX0DV1f51hwLnWigvZU_qXeveVW5lF4-e2WRkCZm3BrC2YjQUzHN0ON4n9ANF_f9k</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Wei, Yingzhen</creator><creator>Wang, Shuang</creator><creator>Chen, Mengyang</creator><creator>Han, Jinfeng</creator><creator>Yang, Guoju</creator><creator>Wang, Qifei</creator><creator>Di, Jiancheng</creator><creator>Li, Hongli</creator><creator>Wu, Wenzheng</creator><creator>Yu, Jihong</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1615-5034</orcidid><orcidid>https://orcid.org/0000-0002-6641-3436</orcidid><orcidid>https://orcid.org/0000-0003-4224-9122</orcidid></search><sort><creationdate>20240401</creationdate><title>Coaxial 3D Printing of Zeolite‐Based Core–Shell Monolithic Cu‐SSZ‐13@SiO2 Catalysts for Diesel Exhaust Treatment</title><author>Wei, Yingzhen ; Wang, Shuang ; Chen, Mengyang ; Han, Jinfeng ; Yang, Guoju ; Wang, Qifei ; Di, Jiancheng ; Li, Hongli ; Wu, Wenzheng ; Yu, Jihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3062-f6cc505080d78773d3f8667c3744b788d4164a7df5c7b2f9d1a824fe54401aa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printers</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>coaxial 3D printing</topic><topic>Core-shell structure</topic><topic>Cu‐SSZ‐13 zeolite</topic><topic>Diffusion layers</topic><topic>Honeycomb structures</topic><topic>Metal oxides</topic><topic>monolithic catalysts</topic><topic>NH3‐SCR</topic><topic>Porous materials</topic><topic>Selective catalytic reduction</topic><topic>Shell stability</topic><topic>Silicon dioxide</topic><topic>Three dimensional printing</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Yingzhen</creatorcontrib><creatorcontrib>Wang, Shuang</creatorcontrib><creatorcontrib>Chen, Mengyang</creatorcontrib><creatorcontrib>Han, Jinfeng</creatorcontrib><creatorcontrib>Yang, Guoju</creatorcontrib><creatorcontrib>Wang, Qifei</creatorcontrib><creatorcontrib>Di, Jiancheng</creatorcontrib><creatorcontrib>Li, Hongli</creatorcontrib><creatorcontrib>Wu, Wenzheng</creatorcontrib><creatorcontrib>Yu, Jihong</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Yingzhen</au><au>Wang, Shuang</au><au>Chen, Mengyang</au><au>Han, Jinfeng</au><au>Yang, Guoju</au><au>Wang, Qifei</au><au>Di, Jiancheng</au><au>Li, Hongli</au><au>Wu, Wenzheng</au><au>Yu, Jihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coaxial 3D Printing of Zeolite‐Based Core–Shell Monolithic Cu‐SSZ‐13@SiO2 Catalysts for Diesel Exhaust Treatment</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2024-04-01</date><risdate>2024</risdate><volume>36</volume><issue>17</issue><spage>e2302912</spage><epage>n/a</epage><pages>e2302912-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Core–shell catalysts with functional shells can increase the activity and stability of the catalysts in selective catalytic reduction of NOx with ammoniax. However, the conventional approaches based on multistep fabrication for core–shell structures encounter persistent restrictions regarding strict synthesis conditions and limited design flexibility. Herein, a facile coaxial 3D printing strategy is for the first time developed to construct zeolite‐based core–shell monolithic catalysts with interconnected honeycomb structures, in which the hydrophilic noncompact silica serves as shell and Cu‐SSZ‐13 zeolite acts as core. Compared to a Cu‐SSZ‐13 monolith which suffers from the interfacial diffusion, the SiO2 shell layer can increase the accessibility of active sites over Cu‐SSZ‐13@SiO2, resulting in a 10–20% higher NO conversion at200−550 °C under 300 000 cm3 g−1 h−1. Meanwhile, a thicker SiO2 shell enhances the hydrothermal stability of the aged catalyst by inhibiting the dealumination and the formation of CuOx. Other representative monolithic catalysts with different topological zeolites as shell and diverse metal oxides as the core can be also realized by this coaxial 3D printing. This strategy allows multiple porous materials to be directly integrated, which allows for flexible design and fabrication of various core–shell monolithic catalysts with customized functionalities.
A facile coaxial 3D printing strategy is developed to fabricate core–shell Cu‐SSZ‐13@SiO2 catalysts with superior mass transfer efficiency and high hydrothermal stability for NH3‐assisted selective catalytic reduction. This coaxial 3D printing technology allows for the flexible design and construction of zeolite‐based core–shell monoliths with the advantages of easy fabrication, universal applicability, and judicious integration of functional composites.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202302912</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1615-5034</orcidid><orcidid>https://orcid.org/0000-0002-6641-3436</orcidid><orcidid>https://orcid.org/0000-0003-4224-9122</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-04, Vol.36 (17), p.e2302912-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2813556494 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | 3-D printers Catalysts Chemical reduction coaxial 3D printing Core-shell structure Cu‐SSZ‐13 zeolite Diffusion layers Honeycomb structures Metal oxides monolithic catalysts NH3‐SCR Porous materials Selective catalytic reduction Shell stability Silicon dioxide Three dimensional printing Zeolites |
title | Coaxial 3D Printing of Zeolite‐Based Core–Shell Monolithic Cu‐SSZ‐13@SiO2 Catalysts for Diesel Exhaust Treatment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A12%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coaxial%203D%20Printing%20of%20Zeolite%E2%80%90Based%20Core%E2%80%93Shell%20Monolithic%20Cu%E2%80%90SSZ%E2%80%9013@SiO2%20Catalysts%20for%20Diesel%20Exhaust%20Treatment&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wei,%20Yingzhen&rft.date=2024-04-01&rft.volume=36&rft.issue=17&rft.spage=e2302912&rft.epage=n/a&rft.pages=e2302912-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202302912&rft_dat=%3Cproquest_wiley%3E2813556494%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p3062-f6cc505080d78773d3f8667c3744b788d4164a7df5c7b2f9d1a824fe54401aa53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3044997456&rft_id=info:pmid/&rfr_iscdi=true |