Loading…

Coaxial 3D Printing of Zeolite‐Based Core–Shell Monolithic Cu‐SSZ‐13@SiO2 Catalysts for Diesel Exhaust Treatment

Core–shell catalysts with functional shells can increase the activity and stability of the catalysts in selective catalytic reduction of NOx with ammoniax. However, the conventional approaches based on multistep fabrication for core–shell structures encounter persistent restrictions regarding strict...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2024-04, Vol.36 (17), p.e2302912-n/a
Main Authors: Wei, Yingzhen, Wang, Shuang, Chen, Mengyang, Han, Jinfeng, Yang, Guoju, Wang, Qifei, Di, Jiancheng, Li, Hongli, Wu, Wenzheng, Yu, Jihong
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 17
container_start_page e2302912
container_title Advanced materials (Weinheim)
container_volume 36
creator Wei, Yingzhen
Wang, Shuang
Chen, Mengyang
Han, Jinfeng
Yang, Guoju
Wang, Qifei
Di, Jiancheng
Li, Hongli
Wu, Wenzheng
Yu, Jihong
description Core–shell catalysts with functional shells can increase the activity and stability of the catalysts in selective catalytic reduction of NOx with ammoniax. However, the conventional approaches based on multistep fabrication for core–shell structures encounter persistent restrictions regarding strict synthesis conditions and limited design flexibility. Herein, a facile coaxial 3D printing strategy is for the first time developed to construct zeolite‐based core–shell monolithic catalysts with interconnected honeycomb structures, in which the hydrophilic noncompact silica serves as shell and Cu‐SSZ‐13 zeolite acts as core. Compared to a Cu‐SSZ‐13 monolith which suffers from the interfacial diffusion, the SiO2 shell layer can increase the accessibility of active sites over Cu‐SSZ‐13@SiO2, resulting in a 10–20% higher NO conversion at200−550 °C under 300 000 cm3 g−1 h−1. Meanwhile, a thicker SiO2 shell enhances the hydrothermal stability of the aged catalyst by inhibiting the dealumination and the formation of CuOx. Other representative monolithic catalysts with different topological zeolites as shell and diverse metal oxides as the core can be also realized by this coaxial 3D printing. This strategy allows multiple porous materials to be directly integrated, which allows for flexible design and fabrication of various core–shell monolithic catalysts with customized functionalities. A facile coaxial 3D printing strategy is developed to fabricate core–shell Cu‐SSZ‐13@SiO2 catalysts with superior mass transfer efficiency and high hydrothermal stability for NH3‐assisted selective catalytic reduction. This coaxial 3D printing technology allows for the flexible design and construction of zeolite‐based core–shell monoliths with the advantages of easy fabrication, universal applicability, and judicious integration of functional composites.
doi_str_mv 10.1002/adma.202302912
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2813556494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2813556494</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3062-f6cc505080d78773d3f8667c3744b788d4164a7df5c7b2f9d1a824fe54401aa53</originalsourceid><addsrcrecordid>eNpdkU1Lw0AQhhdRsH5cPS948RKd_c7erGn9gIpC9eJlWZONXUmzNZtge_MnCP5Df4kpSg9eZniZh2GGB6EjAqcEgJ7ZYm5PKVAGVBO6hQZEUJJw0GIbDUAzkWjJ0120F-MrAGgJcoCWWbBLbyvMRvi-8XXr6xccSvzkQuVb9_3xeWGjK3AWmj58TWeuqvBtqNfTmc9x1vXIdPrUV8LOp_6O4sy2tlrFNuIyNHjkXXQVHi9ntostfmicbeeubg_QTmmr6A7_-j56vBw_ZNfJ5O7qJhtOkgUDSZNS5rkAASkUKlWKFaxMpVQ5U5w_qzQtOJHcqqIUuXqmpS6ITSkvneAciLWC7aOT372LJrx1LrZm7mPef2FrF7poaEqYEJJr3qPH_9DX0DV1f51hwLnWigvZU_qXeveVW5lF4-e2WRkCZm3BrC2YjQUzHN0ON4n9ANF_f9k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044997456</pqid></control><display><type>article</type><title>Coaxial 3D Printing of Zeolite‐Based Core–Shell Monolithic Cu‐SSZ‐13@SiO2 Catalysts for Diesel Exhaust Treatment</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wei, Yingzhen ; Wang, Shuang ; Chen, Mengyang ; Han, Jinfeng ; Yang, Guoju ; Wang, Qifei ; Di, Jiancheng ; Li, Hongli ; Wu, Wenzheng ; Yu, Jihong</creator><creatorcontrib>Wei, Yingzhen ; Wang, Shuang ; Chen, Mengyang ; Han, Jinfeng ; Yang, Guoju ; Wang, Qifei ; Di, Jiancheng ; Li, Hongli ; Wu, Wenzheng ; Yu, Jihong</creatorcontrib><description>Core–shell catalysts with functional shells can increase the activity and stability of the catalysts in selective catalytic reduction of NOx with ammoniax. However, the conventional approaches based on multistep fabrication for core–shell structures encounter persistent restrictions regarding strict synthesis conditions and limited design flexibility. Herein, a facile coaxial 3D printing strategy is for the first time developed to construct zeolite‐based core–shell monolithic catalysts with interconnected honeycomb structures, in which the hydrophilic noncompact silica serves as shell and Cu‐SSZ‐13 zeolite acts as core. Compared to a Cu‐SSZ‐13 monolith which suffers from the interfacial diffusion, the SiO2 shell layer can increase the accessibility of active sites over Cu‐SSZ‐13@SiO2, resulting in a 10–20% higher NO conversion at200−550 °C under 300 000 cm3 g−1 h−1. Meanwhile, a thicker SiO2 shell enhances the hydrothermal stability of the aged catalyst by inhibiting the dealumination and the formation of CuOx. Other representative monolithic catalysts with different topological zeolites as shell and diverse metal oxides as the core can be also realized by this coaxial 3D printing. This strategy allows multiple porous materials to be directly integrated, which allows for flexible design and fabrication of various core–shell monolithic catalysts with customized functionalities. A facile coaxial 3D printing strategy is developed to fabricate core–shell Cu‐SSZ‐13@SiO2 catalysts with superior mass transfer efficiency and high hydrothermal stability for NH3‐assisted selective catalytic reduction. This coaxial 3D printing technology allows for the flexible design and construction of zeolite‐based core–shell monoliths with the advantages of easy fabrication, universal applicability, and judicious integration of functional composites.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202302912</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>3-D printers ; Catalysts ; Chemical reduction ; coaxial 3D printing ; Core-shell structure ; Cu‐SSZ‐13 zeolite ; Diffusion layers ; Honeycomb structures ; Metal oxides ; monolithic catalysts ; NH3‐SCR ; Porous materials ; Selective catalytic reduction ; Shell stability ; Silicon dioxide ; Three dimensional printing ; Zeolites</subject><ispartof>Advanced materials (Weinheim), 2024-04, Vol.36 (17), p.e2302912-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1615-5034 ; 0000-0002-6641-3436 ; 0000-0003-4224-9122</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wei, Yingzhen</creatorcontrib><creatorcontrib>Wang, Shuang</creatorcontrib><creatorcontrib>Chen, Mengyang</creatorcontrib><creatorcontrib>Han, Jinfeng</creatorcontrib><creatorcontrib>Yang, Guoju</creatorcontrib><creatorcontrib>Wang, Qifei</creatorcontrib><creatorcontrib>Di, Jiancheng</creatorcontrib><creatorcontrib>Li, Hongli</creatorcontrib><creatorcontrib>Wu, Wenzheng</creatorcontrib><creatorcontrib>Yu, Jihong</creatorcontrib><title>Coaxial 3D Printing of Zeolite‐Based Core–Shell Monolithic Cu‐SSZ‐13@SiO2 Catalysts for Diesel Exhaust Treatment</title><title>Advanced materials (Weinheim)</title><description>Core–shell catalysts with functional shells can increase the activity and stability of the catalysts in selective catalytic reduction of NOx with ammoniax. However, the conventional approaches based on multistep fabrication for core–shell structures encounter persistent restrictions regarding strict synthesis conditions and limited design flexibility. Herein, a facile coaxial 3D printing strategy is for the first time developed to construct zeolite‐based core–shell monolithic catalysts with interconnected honeycomb structures, in which the hydrophilic noncompact silica serves as shell and Cu‐SSZ‐13 zeolite acts as core. Compared to a Cu‐SSZ‐13 monolith which suffers from the interfacial diffusion, the SiO2 shell layer can increase the accessibility of active sites over Cu‐SSZ‐13@SiO2, resulting in a 10–20% higher NO conversion at200−550 °C under 300 000 cm3 g−1 h−1. Meanwhile, a thicker SiO2 shell enhances the hydrothermal stability of the aged catalyst by inhibiting the dealumination and the formation of CuOx. Other representative monolithic catalysts with different topological zeolites as shell and diverse metal oxides as the core can be also realized by this coaxial 3D printing. This strategy allows multiple porous materials to be directly integrated, which allows for flexible design and fabrication of various core–shell monolithic catalysts with customized functionalities. A facile coaxial 3D printing strategy is developed to fabricate core–shell Cu‐SSZ‐13@SiO2 catalysts with superior mass transfer efficiency and high hydrothermal stability for NH3‐assisted selective catalytic reduction. This coaxial 3D printing technology allows for the flexible design and construction of zeolite‐based core–shell monoliths with the advantages of easy fabrication, universal applicability, and judicious integration of functional composites.</description><subject>3-D printers</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>coaxial 3D printing</subject><subject>Core-shell structure</subject><subject>Cu‐SSZ‐13 zeolite</subject><subject>Diffusion layers</subject><subject>Honeycomb structures</subject><subject>Metal oxides</subject><subject>monolithic catalysts</subject><subject>NH3‐SCR</subject><subject>Porous materials</subject><subject>Selective catalytic reduction</subject><subject>Shell stability</subject><subject>Silicon dioxide</subject><subject>Three dimensional printing</subject><subject>Zeolites</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkU1Lw0AQhhdRsH5cPS948RKd_c7erGn9gIpC9eJlWZONXUmzNZtge_MnCP5Df4kpSg9eZniZh2GGB6EjAqcEgJ7ZYm5PKVAGVBO6hQZEUJJw0GIbDUAzkWjJ0120F-MrAGgJcoCWWbBLbyvMRvi-8XXr6xccSvzkQuVb9_3xeWGjK3AWmj58TWeuqvBtqNfTmc9x1vXIdPrUV8LOp_6O4sy2tlrFNuIyNHjkXXQVHi9ntostfmicbeeubg_QTmmr6A7_-j56vBw_ZNfJ5O7qJhtOkgUDSZNS5rkAASkUKlWKFaxMpVQ5U5w_qzQtOJHcqqIUuXqmpS6ITSkvneAciLWC7aOT372LJrx1LrZm7mPef2FrF7poaEqYEJJr3qPH_9DX0DV1f51hwLnWigvZU_qXeveVW5lF4-e2WRkCZm3BrC2YjQUzHN0ON4n9ANF_f9k</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Wei, Yingzhen</creator><creator>Wang, Shuang</creator><creator>Chen, Mengyang</creator><creator>Han, Jinfeng</creator><creator>Yang, Guoju</creator><creator>Wang, Qifei</creator><creator>Di, Jiancheng</creator><creator>Li, Hongli</creator><creator>Wu, Wenzheng</creator><creator>Yu, Jihong</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1615-5034</orcidid><orcidid>https://orcid.org/0000-0002-6641-3436</orcidid><orcidid>https://orcid.org/0000-0003-4224-9122</orcidid></search><sort><creationdate>20240401</creationdate><title>Coaxial 3D Printing of Zeolite‐Based Core–Shell Monolithic Cu‐SSZ‐13@SiO2 Catalysts for Diesel Exhaust Treatment</title><author>Wei, Yingzhen ; Wang, Shuang ; Chen, Mengyang ; Han, Jinfeng ; Yang, Guoju ; Wang, Qifei ; Di, Jiancheng ; Li, Hongli ; Wu, Wenzheng ; Yu, Jihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3062-f6cc505080d78773d3f8667c3744b788d4164a7df5c7b2f9d1a824fe54401aa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printers</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>coaxial 3D printing</topic><topic>Core-shell structure</topic><topic>Cu‐SSZ‐13 zeolite</topic><topic>Diffusion layers</topic><topic>Honeycomb structures</topic><topic>Metal oxides</topic><topic>monolithic catalysts</topic><topic>NH3‐SCR</topic><topic>Porous materials</topic><topic>Selective catalytic reduction</topic><topic>Shell stability</topic><topic>Silicon dioxide</topic><topic>Three dimensional printing</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Yingzhen</creatorcontrib><creatorcontrib>Wang, Shuang</creatorcontrib><creatorcontrib>Chen, Mengyang</creatorcontrib><creatorcontrib>Han, Jinfeng</creatorcontrib><creatorcontrib>Yang, Guoju</creatorcontrib><creatorcontrib>Wang, Qifei</creatorcontrib><creatorcontrib>Di, Jiancheng</creatorcontrib><creatorcontrib>Li, Hongli</creatorcontrib><creatorcontrib>Wu, Wenzheng</creatorcontrib><creatorcontrib>Yu, Jihong</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Yingzhen</au><au>Wang, Shuang</au><au>Chen, Mengyang</au><au>Han, Jinfeng</au><au>Yang, Guoju</au><au>Wang, Qifei</au><au>Di, Jiancheng</au><au>Li, Hongli</au><au>Wu, Wenzheng</au><au>Yu, Jihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coaxial 3D Printing of Zeolite‐Based Core–Shell Monolithic Cu‐SSZ‐13@SiO2 Catalysts for Diesel Exhaust Treatment</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2024-04-01</date><risdate>2024</risdate><volume>36</volume><issue>17</issue><spage>e2302912</spage><epage>n/a</epage><pages>e2302912-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Core–shell catalysts with functional shells can increase the activity and stability of the catalysts in selective catalytic reduction of NOx with ammoniax. However, the conventional approaches based on multistep fabrication for core–shell structures encounter persistent restrictions regarding strict synthesis conditions and limited design flexibility. Herein, a facile coaxial 3D printing strategy is for the first time developed to construct zeolite‐based core–shell monolithic catalysts with interconnected honeycomb structures, in which the hydrophilic noncompact silica serves as shell and Cu‐SSZ‐13 zeolite acts as core. Compared to a Cu‐SSZ‐13 monolith which suffers from the interfacial diffusion, the SiO2 shell layer can increase the accessibility of active sites over Cu‐SSZ‐13@SiO2, resulting in a 10–20% higher NO conversion at200−550 °C under 300 000 cm3 g−1 h−1. Meanwhile, a thicker SiO2 shell enhances the hydrothermal stability of the aged catalyst by inhibiting the dealumination and the formation of CuOx. Other representative monolithic catalysts with different topological zeolites as shell and diverse metal oxides as the core can be also realized by this coaxial 3D printing. This strategy allows multiple porous materials to be directly integrated, which allows for flexible design and fabrication of various core–shell monolithic catalysts with customized functionalities. A facile coaxial 3D printing strategy is developed to fabricate core–shell Cu‐SSZ‐13@SiO2 catalysts with superior mass transfer efficiency and high hydrothermal stability for NH3‐assisted selective catalytic reduction. This coaxial 3D printing technology allows for the flexible design and construction of zeolite‐based core–shell monoliths with the advantages of easy fabrication, universal applicability, and judicious integration of functional composites.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202302912</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1615-5034</orcidid><orcidid>https://orcid.org/0000-0002-6641-3436</orcidid><orcidid>https://orcid.org/0000-0003-4224-9122</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-04, Vol.36 (17), p.e2302912-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2813556494
source Wiley-Blackwell Read & Publish Collection
subjects 3-D printers
Catalysts
Chemical reduction
coaxial 3D printing
Core-shell structure
Cu‐SSZ‐13 zeolite
Diffusion layers
Honeycomb structures
Metal oxides
monolithic catalysts
NH3‐SCR
Porous materials
Selective catalytic reduction
Shell stability
Silicon dioxide
Three dimensional printing
Zeolites
title Coaxial 3D Printing of Zeolite‐Based Core–Shell Monolithic Cu‐SSZ‐13@SiO2 Catalysts for Diesel Exhaust Treatment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A12%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coaxial%203D%20Printing%20of%20Zeolite%E2%80%90Based%20Core%E2%80%93Shell%20Monolithic%20Cu%E2%80%90SSZ%E2%80%9013@SiO2%20Catalysts%20for%20Diesel%20Exhaust%20Treatment&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wei,%20Yingzhen&rft.date=2024-04-01&rft.volume=36&rft.issue=17&rft.spage=e2302912&rft.epage=n/a&rft.pages=e2302912-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202302912&rft_dat=%3Cproquest_wiley%3E2813556494%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p3062-f6cc505080d78773d3f8667c3744b788d4164a7df5c7b2f9d1a824fe54401aa53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3044997456&rft_id=info:pmid/&rfr_iscdi=true