Loading…

Density results using Stokeslets and a method of fundamental solutions for the Stokes equations

In this paper we establish new density results for the trace spaces H 1/2( ∂Ω) and H n 1/2( ∂Ω)≔{ v ∈ H 1/2( ∂Ω): ∫ ∂Ω v · n =0} in terms of Stokeslets, fundamental solutions of the Stokes equations. Such density results are used to choose basis functions in the Method of Fundamental Solutions (MFS)...

Full description

Saved in:
Bibliographic Details
Published in:Engineering analysis with boundary elements 2004-10, Vol.28 (10), p.1245-1252
Main Authors: Alves, C.J.S, Silvestre, A.L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-6d1ac98e75e71e8be1c3e22a99591b9efcf889bb93264735e74daab0cec2a96d3
cites cdi_FETCH-LOGICAL-c350t-6d1ac98e75e71e8be1c3e22a99591b9efcf889bb93264735e74daab0cec2a96d3
container_end_page 1252
container_issue 10
container_start_page 1245
container_title Engineering analysis with boundary elements
container_volume 28
creator Alves, C.J.S
Silvestre, A.L
description In this paper we establish new density results for the trace spaces H 1/2( ∂Ω) and H n 1/2( ∂Ω)≔{ v ∈ H 1/2( ∂Ω): ∫ ∂Ω v · n =0} in terms of Stokeslets, fundamental solutions of the Stokes equations. Such density results are used to choose basis functions in the Method of Fundamental Solutions (MFS) for solving boundary value problems for the Stokes equations. Numerical simulations for the two-dimensional Dirichlet problem using this MFS method are presented.
doi_str_mv 10.1016/j.enganabound.2003.08.007
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28137933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0955799704000189</els_id><sourcerecordid>28137933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-6d1ac98e75e71e8be1c3e22a99591b9efcf889bb93264735e74daab0cec2a96d3</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EEqXwH8zClmDHTRyPqHxKlRgAic1ynEvrktit7SD13-PSDoxMJ909753uQeiakpwSWt2uc7BLZVXjRtvmBSEsJ3VOCD9BE1pzllHBP0_RhIiyzLgQ_BxdhLAmhDJCqgmS92CDiTvsIYx9DHgMxi7xW3RfEHpIDWVbrPAAceVa7DrcpUNqABtVj4Prx2icDbhzHscVHIMYtqP6HVyis071Aa6OdYo-Hh_e58_Z4vXpZX63yDQrScyqliotauAlcAp1A1QzKAolRCloI6DTXV2LphGsqGacJWrWKtUQDTpBVcum6Oawd-PddoQQ5WCChr5XFtwYZFFTxgVjCRQHUHsXgodObrwZlN9JSuReqVzLP0rlXqkktUxKU3Z-yEL65NuAl0EbsBpa40FH2Trzjy0_AM2Irg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28137933</pqid></control><display><type>article</type><title>Density results using Stokeslets and a method of fundamental solutions for the Stokes equations</title><source>Elsevier</source><creator>Alves, C.J.S ; Silvestre, A.L</creator><creatorcontrib>Alves, C.J.S ; Silvestre, A.L</creatorcontrib><description>In this paper we establish new density results for the trace spaces H 1/2( ∂Ω) and H n 1/2( ∂Ω)≔{ v ∈ H 1/2( ∂Ω): ∫ ∂Ω v · n =0} in terms of Stokeslets, fundamental solutions of the Stokes equations. Such density results are used to choose basis functions in the Method of Fundamental Solutions (MFS) for solving boundary value problems for the Stokes equations. Numerical simulations for the two-dimensional Dirichlet problem using this MFS method are presented.</description><identifier>ISSN: 0955-7997</identifier><identifier>EISSN: 1873-197X</identifier><identifier>DOI: 10.1016/j.enganabound.2003.08.007</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Density theorems ; Method of fundamental solutions ; Stokes equations</subject><ispartof>Engineering analysis with boundary elements, 2004-10, Vol.28 (10), p.1245-1252</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-6d1ac98e75e71e8be1c3e22a99591b9efcf889bb93264735e74daab0cec2a96d3</citedby><cites>FETCH-LOGICAL-c350t-6d1ac98e75e71e8be1c3e22a99591b9efcf889bb93264735e74daab0cec2a96d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Alves, C.J.S</creatorcontrib><creatorcontrib>Silvestre, A.L</creatorcontrib><title>Density results using Stokeslets and a method of fundamental solutions for the Stokes equations</title><title>Engineering analysis with boundary elements</title><description>In this paper we establish new density results for the trace spaces H 1/2( ∂Ω) and H n 1/2( ∂Ω)≔{ v ∈ H 1/2( ∂Ω): ∫ ∂Ω v · n =0} in terms of Stokeslets, fundamental solutions of the Stokes equations. Such density results are used to choose basis functions in the Method of Fundamental Solutions (MFS) for solving boundary value problems for the Stokes equations. Numerical simulations for the two-dimensional Dirichlet problem using this MFS method are presented.</description><subject>Density theorems</subject><subject>Method of fundamental solutions</subject><subject>Stokes equations</subject><issn>0955-7997</issn><issn>1873-197X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAQhi0EEqXwH8zClmDHTRyPqHxKlRgAic1ynEvrktit7SD13-PSDoxMJ909753uQeiakpwSWt2uc7BLZVXjRtvmBSEsJ3VOCD9BE1pzllHBP0_RhIiyzLgQ_BxdhLAmhDJCqgmS92CDiTvsIYx9DHgMxi7xW3RfEHpIDWVbrPAAceVa7DrcpUNqABtVj4Prx2icDbhzHscVHIMYtqP6HVyis071Aa6OdYo-Hh_e58_Z4vXpZX63yDQrScyqliotauAlcAp1A1QzKAolRCloI6DTXV2LphGsqGacJWrWKtUQDTpBVcum6Oawd-PddoQQ5WCChr5XFtwYZFFTxgVjCRQHUHsXgodObrwZlN9JSuReqVzLP0rlXqkktUxKU3Z-yEL65NuAl0EbsBpa40FH2Trzjy0_AM2Irg</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>Alves, C.J.S</creator><creator>Silvestre, A.L</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20041001</creationdate><title>Density results using Stokeslets and a method of fundamental solutions for the Stokes equations</title><author>Alves, C.J.S ; Silvestre, A.L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-6d1ac98e75e71e8be1c3e22a99591b9efcf889bb93264735e74daab0cec2a96d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Density theorems</topic><topic>Method of fundamental solutions</topic><topic>Stokes equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alves, C.J.S</creatorcontrib><creatorcontrib>Silvestre, A.L</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering analysis with boundary elements</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alves, C.J.S</au><au>Silvestre, A.L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Density results using Stokeslets and a method of fundamental solutions for the Stokes equations</atitle><jtitle>Engineering analysis with boundary elements</jtitle><date>2004-10-01</date><risdate>2004</risdate><volume>28</volume><issue>10</issue><spage>1245</spage><epage>1252</epage><pages>1245-1252</pages><issn>0955-7997</issn><eissn>1873-197X</eissn><abstract>In this paper we establish new density results for the trace spaces H 1/2( ∂Ω) and H n 1/2( ∂Ω)≔{ v ∈ H 1/2( ∂Ω): ∫ ∂Ω v · n =0} in terms of Stokeslets, fundamental solutions of the Stokes equations. Such density results are used to choose basis functions in the Method of Fundamental Solutions (MFS) for solving boundary value problems for the Stokes equations. Numerical simulations for the two-dimensional Dirichlet problem using this MFS method are presented.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.enganabound.2003.08.007</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0955-7997
ispartof Engineering analysis with boundary elements, 2004-10, Vol.28 (10), p.1245-1252
issn 0955-7997
1873-197X
language eng
recordid cdi_proquest_miscellaneous_28137933
source Elsevier
subjects Density theorems
Method of fundamental solutions
Stokes equations
title Density results using Stokeslets and a method of fundamental solutions for the Stokes equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T09%3A08%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Density%20results%20using%20Stokeslets%20and%20a%20method%20of%20fundamental%20solutions%20for%20the%20Stokes%20equations&rft.jtitle=Engineering%20analysis%20with%20boundary%20elements&rft.au=Alves,%20C.J.S&rft.date=2004-10-01&rft.volume=28&rft.issue=10&rft.spage=1245&rft.epage=1252&rft.pages=1245-1252&rft.issn=0955-7997&rft.eissn=1873-197X&rft_id=info:doi/10.1016/j.enganabound.2003.08.007&rft_dat=%3Cproquest_cross%3E28137933%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-6d1ac98e75e71e8be1c3e22a99591b9efcf889bb93264735e74daab0cec2a96d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28137933&rft_id=info:pmid/&rfr_iscdi=true