Loading…
Density results using Stokeslets and a method of fundamental solutions for the Stokes equations
In this paper we establish new density results for the trace spaces H 1/2( ∂Ω) and H n 1/2( ∂Ω)≔{ v ∈ H 1/2( ∂Ω): ∫ ∂Ω v · n =0} in terms of Stokeslets, fundamental solutions of the Stokes equations. Such density results are used to choose basis functions in the Method of Fundamental Solutions (MFS)...
Saved in:
Published in: | Engineering analysis with boundary elements 2004-10, Vol.28 (10), p.1245-1252 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c350t-6d1ac98e75e71e8be1c3e22a99591b9efcf889bb93264735e74daab0cec2a96d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c350t-6d1ac98e75e71e8be1c3e22a99591b9efcf889bb93264735e74daab0cec2a96d3 |
container_end_page | 1252 |
container_issue | 10 |
container_start_page | 1245 |
container_title | Engineering analysis with boundary elements |
container_volume | 28 |
creator | Alves, C.J.S Silvestre, A.L |
description | In this paper we establish new density results for the trace spaces
H
1/2(
∂Ω)
and
H
n
1/2(
∂Ω)≔{
v
∈
H
1/2(
∂Ω):
∫
∂Ω
v
·
n
=0}
in terms of Stokeslets, fundamental solutions of the Stokes equations. Such density results are used to choose basis functions in the Method of Fundamental Solutions (MFS) for solving boundary value problems for the Stokes equations. Numerical simulations for the two-dimensional Dirichlet problem using this MFS method are presented. |
doi_str_mv | 10.1016/j.enganabound.2003.08.007 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28137933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0955799704000189</els_id><sourcerecordid>28137933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-6d1ac98e75e71e8be1c3e22a99591b9efcf889bb93264735e74daab0cec2a96d3</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EEqXwH8zClmDHTRyPqHxKlRgAic1ynEvrktit7SD13-PSDoxMJ909753uQeiakpwSWt2uc7BLZVXjRtvmBSEsJ3VOCD9BE1pzllHBP0_RhIiyzLgQ_BxdhLAmhDJCqgmS92CDiTvsIYx9DHgMxi7xW3RfEHpIDWVbrPAAceVa7DrcpUNqABtVj4Prx2icDbhzHscVHIMYtqP6HVyis071Aa6OdYo-Hh_e58_Z4vXpZX63yDQrScyqliotauAlcAp1A1QzKAolRCloI6DTXV2LphGsqGacJWrWKtUQDTpBVcum6Oawd-PddoQQ5WCChr5XFtwYZFFTxgVjCRQHUHsXgodObrwZlN9JSuReqVzLP0rlXqkktUxKU3Z-yEL65NuAl0EbsBpa40FH2Trzjy0_AM2Irg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28137933</pqid></control><display><type>article</type><title>Density results using Stokeslets and a method of fundamental solutions for the Stokes equations</title><source>Elsevier</source><creator>Alves, C.J.S ; Silvestre, A.L</creator><creatorcontrib>Alves, C.J.S ; Silvestre, A.L</creatorcontrib><description>In this paper we establish new density results for the trace spaces
H
1/2(
∂Ω)
and
H
n
1/2(
∂Ω)≔{
v
∈
H
1/2(
∂Ω):
∫
∂Ω
v
·
n
=0}
in terms of Stokeslets, fundamental solutions of the Stokes equations. Such density results are used to choose basis functions in the Method of Fundamental Solutions (MFS) for solving boundary value problems for the Stokes equations. Numerical simulations for the two-dimensional Dirichlet problem using this MFS method are presented.</description><identifier>ISSN: 0955-7997</identifier><identifier>EISSN: 1873-197X</identifier><identifier>DOI: 10.1016/j.enganabound.2003.08.007</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Density theorems ; Method of fundamental solutions ; Stokes equations</subject><ispartof>Engineering analysis with boundary elements, 2004-10, Vol.28 (10), p.1245-1252</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-6d1ac98e75e71e8be1c3e22a99591b9efcf889bb93264735e74daab0cec2a96d3</citedby><cites>FETCH-LOGICAL-c350t-6d1ac98e75e71e8be1c3e22a99591b9efcf889bb93264735e74daab0cec2a96d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Alves, C.J.S</creatorcontrib><creatorcontrib>Silvestre, A.L</creatorcontrib><title>Density results using Stokeslets and a method of fundamental solutions for the Stokes equations</title><title>Engineering analysis with boundary elements</title><description>In this paper we establish new density results for the trace spaces
H
1/2(
∂Ω)
and
H
n
1/2(
∂Ω)≔{
v
∈
H
1/2(
∂Ω):
∫
∂Ω
v
·
n
=0}
in terms of Stokeslets, fundamental solutions of the Stokes equations. Such density results are used to choose basis functions in the Method of Fundamental Solutions (MFS) for solving boundary value problems for the Stokes equations. Numerical simulations for the two-dimensional Dirichlet problem using this MFS method are presented.</description><subject>Density theorems</subject><subject>Method of fundamental solutions</subject><subject>Stokes equations</subject><issn>0955-7997</issn><issn>1873-197X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAQhi0EEqXwH8zClmDHTRyPqHxKlRgAic1ynEvrktit7SD13-PSDoxMJ909753uQeiakpwSWt2uc7BLZVXjRtvmBSEsJ3VOCD9BE1pzllHBP0_RhIiyzLgQ_BxdhLAmhDJCqgmS92CDiTvsIYx9DHgMxi7xW3RfEHpIDWVbrPAAceVa7DrcpUNqABtVj4Prx2icDbhzHscVHIMYtqP6HVyis071Aa6OdYo-Hh_e58_Z4vXpZX63yDQrScyqliotauAlcAp1A1QzKAolRCloI6DTXV2LphGsqGacJWrWKtUQDTpBVcum6Oawd-PddoQQ5WCChr5XFtwYZFFTxgVjCRQHUHsXgodObrwZlN9JSuReqVzLP0rlXqkktUxKU3Z-yEL65NuAl0EbsBpa40FH2Trzjy0_AM2Irg</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>Alves, C.J.S</creator><creator>Silvestre, A.L</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20041001</creationdate><title>Density results using Stokeslets and a method of fundamental solutions for the Stokes equations</title><author>Alves, C.J.S ; Silvestre, A.L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-6d1ac98e75e71e8be1c3e22a99591b9efcf889bb93264735e74daab0cec2a96d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Density theorems</topic><topic>Method of fundamental solutions</topic><topic>Stokes equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alves, C.J.S</creatorcontrib><creatorcontrib>Silvestre, A.L</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering analysis with boundary elements</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alves, C.J.S</au><au>Silvestre, A.L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Density results using Stokeslets and a method of fundamental solutions for the Stokes equations</atitle><jtitle>Engineering analysis with boundary elements</jtitle><date>2004-10-01</date><risdate>2004</risdate><volume>28</volume><issue>10</issue><spage>1245</spage><epage>1252</epage><pages>1245-1252</pages><issn>0955-7997</issn><eissn>1873-197X</eissn><abstract>In this paper we establish new density results for the trace spaces
H
1/2(
∂Ω)
and
H
n
1/2(
∂Ω)≔{
v
∈
H
1/2(
∂Ω):
∫
∂Ω
v
·
n
=0}
in terms of Stokeslets, fundamental solutions of the Stokes equations. Such density results are used to choose basis functions in the Method of Fundamental Solutions (MFS) for solving boundary value problems for the Stokes equations. Numerical simulations for the two-dimensional Dirichlet problem using this MFS method are presented.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.enganabound.2003.08.007</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0955-7997 |
ispartof | Engineering analysis with boundary elements, 2004-10, Vol.28 (10), p.1245-1252 |
issn | 0955-7997 1873-197X |
language | eng |
recordid | cdi_proquest_miscellaneous_28137933 |
source | Elsevier |
subjects | Density theorems Method of fundamental solutions Stokes equations |
title | Density results using Stokeslets and a method of fundamental solutions for the Stokes equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T09%3A08%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Density%20results%20using%20Stokeslets%20and%20a%20method%20of%20fundamental%20solutions%20for%20the%20Stokes%20equations&rft.jtitle=Engineering%20analysis%20with%20boundary%20elements&rft.au=Alves,%20C.J.S&rft.date=2004-10-01&rft.volume=28&rft.issue=10&rft.spage=1245&rft.epage=1252&rft.pages=1245-1252&rft.issn=0955-7997&rft.eissn=1873-197X&rft_id=info:doi/10.1016/j.enganabound.2003.08.007&rft_dat=%3Cproquest_cross%3E28137933%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-6d1ac98e75e71e8be1c3e22a99591b9efcf889bb93264735e74daab0cec2a96d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28137933&rft_id=info:pmid/&rfr_iscdi=true |