Loading…

Structural characteristics of a novel Bletilla striata polysaccharide and its activities for the alleviation of liver fibrosis

Liver fibrosis has proven to be the main predisposing factor for liver cirrhosis and liver cancer; however, an effective treatment remains elusive. Polysaccharides, with low toxicity and a wide range of bioactivities, are strong potential candidates for anti-hepatic fibrosis applications. For this s...

Full description

Saved in:
Bibliographic Details
Published in:Carbohydrate polymers 2023-08, Vol.313, p.120781-120781, Article 120781
Main Authors: Jiang, Guanghui, Wang, Bulei, Wang, Yuwen, Kong, Haoyue, Wang, Yufei, Gao, Peng, Guo, Minghao, Li, Wenna, Zhang, Jian, Wang, Zhezhi, Niu, Junfeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Liver fibrosis has proven to be the main predisposing factor for liver cirrhosis and liver cancer; however, an effective treatment remains elusive. Polysaccharides, with low toxicity and a wide range of bioactivities, are strong potential candidates for anti-hepatic fibrosis applications. For this study, a new low molecular weight neutral polysaccharide (B. striata glucomannan (BSP)) was extracted and purified from Bletilla striata. The structure of BSP was characterized and its activities for alleviating liver fibrosis in vivo were further evaluated. The results revealed that the structural unit of BSP was likely →4)-β-D-Glcp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-2ace-Manp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-Glcp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-3ace-Manp-(1→, with a molecular weight of only 58.5 kDa. Additionally, BSP was observed to attenuate the passive impacts of liver fibrosis in a manner closely related to TLR2/TLR4-MyD88-NF-κB signaling pathway conduction. In summary, the results of this study provide theoretical foundations for the potential applications of BSP as an anti-liver fibrosis platform.
ISSN:0144-8617
1879-1344
DOI:10.1016/j.carbpol.2023.120781