Loading…

Geodynamic controls on diamond deposits: Implications for Australian occurrences

Conventional diamond exploration guidelines predict that economic diamond occurrences will be restricted to Archaean cratons, where the lithosphere is thick and cool, and diamond is the stable form of carbon in the lower portions of the lithosphere. However, Australia's current economic diamond...

Full description

Saved in:
Bibliographic Details
Published in:Tectonophysics 2005-08, Vol.404 (3), p.217-236
Main Authors: O'Neill, C.J., Moresi, L., Jaques, A.L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Conventional diamond exploration guidelines predict that economic diamond occurrences will be restricted to Archaean cratons, where the lithosphere is thick and cool, and diamond is the stable form of carbon in the lower portions of the lithosphere. However, Australia's current economic diamond deposits are not well predicted by these conventional exploration guidelines. Tomographic images show that Australia's economic diamond deposits lie at step changes in lithospheric thickness within dominantly cratonized Proterozoic provinces with thick (≥ 200 km) lithosphere. The thickest portions of the seismic lithosphere in Australia occur not under the major Archaean cratons, rather the central Proterozoic regions of the continent. We use a numerical code to show that such features are stable, and that the longevity of the diamond stability field is dependent on distance to the continent–ocean boundary, local depth of the chemical boundary layer (CBL), and proximity to changes in CBL depth. We also show that abrupt changes in lithospheric thickness focus lithospheric stress gradients, affecting melt migration paths, and that continental melt production is enhanced in regions adjacent to major cratons. Diamond pipes occur where conditions conducive to diamond stability and deep-seated alkaline volcanism (kimberlite or lamproite) occur simultaneously, and the common confluence of these factors at abrupt changes in lithospheric thickness marks them as potential exploration targets.
ISSN:0040-1951
1879-3266
DOI:10.1016/j.tecto.2005.04.010