Loading…

From Prediction to Action: Dissociable Roles of Ventral Tegmental Area and Substantia Nigra Dopamine Neurons in Instrumental Reinforcement

Reward seeking requires the coordination of motor programs to achieve goals. Midbrain dopamine neurons are critical for reinforcement, and their activation is sufficient for learning about cues, actions, and outcomes. Here we examine in detail the mechanisms underlying the ability of ventral tegment...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2023-05, Vol.43 (21), p.3895-3908
Main Authors: Fraser, Kurt M, Pribut, Heather J, Janak, Patricia H, Keiflin, Ronald
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reward seeking requires the coordination of motor programs to achieve goals. Midbrain dopamine neurons are critical for reinforcement, and their activation is sufficient for learning about cues, actions, and outcomes. Here we examine in detail the mechanisms underlying the ability of ventral tegmental area (VTA) and substantia nigra (SNc) dopamine neurons to support instrumental learning. By exploiting numerous behavioral tasks in combination with time-limited optogenetic manipulations in male and female rats, we reveal that VTA and SNc dopamine neurons generate reinforcement through separable psychological processes. VTA dopamine neurons imbue actions and their associated cues with motivational value that allows flexible and persistent pursuit, whereas SNc dopamine neurons support time-limited, precise, action-specific learning that is nonscalable and inflexible. This architecture is reminiscent of actor-critic reinforcement learning models with VTA and SNc instructing the critic and actor, respectively. Our findings indicate that heterogeneous dopamine systems support unique forms of instrumental learning that ultimately result in disparate reward-seeking strategies. Dopamine neurons in the midbrain are essential for learning, motivation, and movement. Here we describe in detail the ability of VTA and SNc dopamine neurons to generate instrumental reinforcement, a process where an agent learns about actions they can emit to earn reward. While rats will avidly work and learn to respond for activation of VTA and SNc dopamine neurons, we find that only VTA dopamine neurons imbue actions and their associated cues with motivational value that spur continued pursuit of reward. Our data support a hypothesis that VTA and SNc dopamine neurons engage distinct psychological processes that have consequences for our understanding of these neurons in health and disease.
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.0028-23.2023