Loading…

Eco-Friendly Solvent-Processed Dithienosilicon-Bridged Carbazole-Based Small-Molecule Acceptors Achieved over 25.7% PCE in Ternary Devices under Indoor Conditions

Terminal acceptor atoms and side-chain functionalization play a vital role in the construction of efficient nonfullerene small-molecule acceptors (NF-SMAs) for AM1.5G/indoor organic photovoltaic (OPV) applications. In this work, we report three dithienosilicon-bridged carbazole-based (DTSiC) ladder-...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2023-05, Vol.15 (20), p.24658-24669
Main Authors: Busireddy, Manohar Reddy, Huang, Sheng-Ci, Su, Yi-Jia, Lee, Ze-Ye, Wang, Chuan-Hsin, Scharber, Markus C., Chen, Jiun-Tai, Hsu, Chain-Shu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Terminal acceptor atoms and side-chain functionalization play a vital role in the construction of efficient nonfullerene small-molecule acceptors (NF-SMAs) for AM1.5G/indoor organic photovoltaic (OPV) applications. In this work, we report three dithienosilicon-bridged carbazole-based (DTSiC) ladder-type (A–DD′D–A) NF-SMAs for AM1.5G/indoor OPVs. First, we synthesize DTSiC-4F and DTSiC-2M, which are composed of a fused DTSiC-based central core with difluorinated 1,1-dicyanomethylene-3-indanone (2F-IC) and methylated IC (M-IC) end groups, respectively. Then, alkoxy chains are introduced in the fused carbazole backbone of DTSiC-4F to form DTSiCODe-4F. From solution to film absorption, DTSiC-4F exhibits a bathochromic shift with strong π–π interactions, which improves the short-circuit current density (J sc) and the fill factor (FF). On the other hand, DTSiC-2M and DTSiCODe-4F display up-shifting lowest unoccupied molecular orbital (LUMO) energy levels, which enhances the open-circuit voltage (V oc). As a result, under both AM1.5G/indoor conditions, the devices based on PM7:DTSiC-4F, PM7:DTSiC-2M, and PM7:DTSiCOCe-4F show power conversion efficiencies (PCEs) of 13.13/21.80%, 8.62/20.02, and 9.41/20.56%, respectively. Furthermore, the addition of a third component to the active layer of binary devices is also a simple and efficient strategy to achieve higher photovoltaic efficiencies. Therefore, the conjugated polymer donor PTO2 is introduced into the PM7:DTSiC-4F active layer because of the hypsochromically shifted complementary absorption, deep highest occupied molecular orbital (HOMO) energy level, good miscibility with PM7 and DTSiC-4F, and optimal film morphology. The resulting ternary OSC device based on PTO2:PM7:DTSiC-4F can improve exciton generation, phase separation, charge transport, and charge extraction. As a consequence, the PTO2:PM7:DTSiC-4F-based ternary device achieves an outstanding PCE of 13.33/25.70% under AM1.5G/indoor conditions. As far as we know, the obtained PCE results under indoor conditions are one of the best binary/ternary-based systems processed from eco-friendly solvents.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.3c02966