Loading…

Wheat rhizosphere colonization by Bacillus amyloliquefaciens W10 and Pseudomonas protegens FD6 suppress soil and in planta abundance of the sharp eyespot pathogen Rhizoctonia cerealis

Develop quantitative assays (qPCR) to determine the wheat rhizosphere competence of inoculant strains Bacillus amyloliquefaciens W10 and Pseudomonas protegens FD6, and their suppressive efficacies against the sharp eyespot pathogen Rhizoctonia cerealis. Antimicrobial metabolites of strains W10 and F...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied microbiology 2023-05, Vol.134 (5)
Main Authors: Zhang, Qingxia, Liu, Yinyin, Harvey, Paul R, Stummer, Belinda E, Yang, Jinglong, Ji, Zhaolin
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Develop quantitative assays (qPCR) to determine the wheat rhizosphere competence of inoculant strains Bacillus amyloliquefaciens W10 and Pseudomonas protegens FD6, and their suppressive efficacies against the sharp eyespot pathogen Rhizoctonia cerealis. Antimicrobial metabolites of strains W10 and FD6 decreased in vitro growth of R. cerealis. A qPCR assay for strain W10 was designed from a diagnostic AFLP fragment and the rhizosphere dynamics of both strains in wheat seedlings were compared by culture-dependent (CFU) and qPCR assays. The qPCR minimum detection limits for strains W10 and FD6 were log 3.04 and log 4.03 genome (cell) equivalents g-1 soil, respectively. Inoculant soil and rhizosphere abundance determined by CFU and qPCR were highly correlated (r > 0.91). In wheat bioassays, rhizosphere abundance of strain FD6 was up to 80-fold greater (P 
ISSN:1365-2672
1365-2672
DOI:10.1093/jambio/lxad101