Loading…

A dynamic model for predicting hydrologic response to land cover changes in gauged and ungauged catchments

The potential impacts of deforestation on hydrological response are of significant importance in highland regions of northern Thailand and other parts of southern Asia. In these regions, where climate exhibits strong seasonality, the availability of water in the dry season determines the feasibility...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydrology (Amsterdam) 2004-05, Vol.291 (1), p.115-131
Main Authors: Croke, B.F.W, Merritt, W.S, Jakeman, A.J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The potential impacts of deforestation on hydrological response are of significant importance in highland regions of northern Thailand and other parts of southern Asia. In these regions, where climate exhibits strong seasonality, the availability of water in the dry season determines the feasibility of multiple crop rotations. Based on the IHACRES rainfall-runoff model, a simple scaling procedure and landcover data, this paper presents a simple hydrologic approach to predict hydrologic response to land use changes, and to predict streamflow in ungauged catchments. The latter is a major hurdle in water resource analyses in regions like northern Thailand where there is a lack of stream gauge instrumentation, or where assessment of water availability is required at locations between gauging sites as input to agricultural production models. A simple regionalisation of streamflow response was tested for three gauged subcatchments of the Mae Chaem catchment in northern Thailand. Overall performance was superior when calibrated parameters from the largest catchment were used to infer parameters for the regionalisation. Most importantly, the procedure was able to predict the relative pattern of annual and seasonal flows, whatever the reference catchment on which the regionalisation was based. Investigations of the impacts of forest cover changes on modelled hydrological response are presented and the key model parameters to which model outputs are most sensitive are discussed.
ISSN:0022-1694
1879-2707
DOI:10.1016/j.jhydrol.2003.12.012