Loading…

Efficient 3-D Finite Element Modeling of Periodic XBAR Resonators

An efficient technique is presented for 3-D finite element modeling of large-scale periodic excited bulk acoustic resonator (XBAR) resonators in the time-harmonic domain. In this technique, a domain decomposition scheme is used to decompose the computational domain into many small subdomains whose F...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2023-07, Vol.70 (7), p.759-771
Main Authors: Li, Hongliang, Koskela, Julius, Massey, Jackson W, Willemsen, Balam, Jin, Jian-Ming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c282t-49462f1511869bf184a44891c34e50250e5d0e3eff0bfe8e591ce8088187bfee3
container_end_page 771
container_issue 7
container_start_page 759
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 70
creator Li, Hongliang
Koskela, Julius
Massey, Jackson W
Willemsen, Balam
Jin, Jian-Ming
description An efficient technique is presented for 3-D finite element modeling of large-scale periodic excited bulk acoustic resonator (XBAR) resonators in the time-harmonic domain. In this technique, a domain decomposition scheme is used to decompose the computational domain into many small subdomains whose FE subsystems can be factorized with a direct sparse solver at a low cost. Transmission conditions (TCs) are enforced to interconnect adjacent subdomains, and a global interface system is formulated and solved iteratively. To accelerate the convergence, a second-order TC (SOTC) is designed to make the subdomain interfaces transparent for propagating and evanescent waves. An effective forward-backward preconditioner is constructed that when combined with the SOTC significantly reduce the number of iterations at no additional cost. Numerical results are given to demonstrate the accuracy, efficiency, and capability of the proposed algorithm.
doi_str_mv 10.1109/TUFFC.2023.3277342
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2815248310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2831521335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-49462f1511869bf184a44891c34e50250e5d0e3eff0bfe8e591ce8088187bfee3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbP34Ax4k4MVL6s5-NJtjrY0KFaW04G1Jk1nZkmRrNjn4793a6sHTwMwzw7wPIVdARwA0vVuusmw6YpTxEWdJwgU7IkOQTMYqlfKYDKlSMuYU6ICceb-hFIRI2SkZ8ARSqQQdksnMGFtYbLqIxw9RZhvbYTSrsN61XlyJlW0-ImeiN2ytK20Rvd9PFtECvWvyzrX-gpyYvPJ4eajnZJXNltOneP76-DydzOOCKdbFIhVjZkACqHG6NqBELoRKoeACJWWSoiwpcjSGrg0qlGGEKiQAlYQG8nNyu7-7bd1nj77TtfUFVlXeoOu9ZipEF4oDDejNP3Tj-rYJ3wWKBww4l4Fie6ponfctGr1tbZ23Xxqo3gnWP4L1TrA-CA5L14fT_brG8m_l1yj_BkiYcyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831521335</pqid></control><display><type>article</type><title>Efficient 3-D Finite Element Modeling of Periodic XBAR Resonators</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Hongliang ; Koskela, Julius ; Massey, Jackson W ; Willemsen, Balam ; Jin, Jian-Ming</creator><creatorcontrib>Li, Hongliang ; Koskela, Julius ; Massey, Jackson W ; Willemsen, Balam ; Jin, Jian-Ming</creatorcontrib><description>An efficient technique is presented for 3-D finite element modeling of large-scale periodic excited bulk acoustic resonator (XBAR) resonators in the time-harmonic domain. In this technique, a domain decomposition scheme is used to decompose the computational domain into many small subdomains whose FE subsystems can be factorized with a direct sparse solver at a low cost. Transmission conditions (TCs) are enforced to interconnect adjacent subdomains, and a global interface system is formulated and solved iteratively. To accelerate the convergence, a second-order TC (SOTC) is designed to make the subdomain interfaces transparent for propagating and evanescent waves. An effective forward-backward preconditioner is constructed that when combined with the SOTC significantly reduce the number of iterations at no additional cost. Numerical results are given to demonstrate the accuracy, efficiency, and capability of the proposed algorithm.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2023.3277342</identifier><identifier>PMID: 37195840</identifier><language>eng</language><publisher>United States: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Algorithms ; Bulk acoustic wave devices ; Domain decomposition methods ; Evanescent waves ; Finite element method ; Mathematical models ; Resonators ; Subsystems ; Three dimensional models ; Wave propagation</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2023-07, Vol.70 (7), p.759-771</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c282t-49462f1511869bf184a44891c34e50250e5d0e3eff0bfe8e591ce8088187bfee3</cites><orcidid>0000-0003-4937-6183 ; 0000-0003-0566-3711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37195840$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Hongliang</creatorcontrib><creatorcontrib>Koskela, Julius</creatorcontrib><creatorcontrib>Massey, Jackson W</creatorcontrib><creatorcontrib>Willemsen, Balam</creatorcontrib><creatorcontrib>Jin, Jian-Ming</creatorcontrib><title>Efficient 3-D Finite Element Modeling of Periodic XBAR Resonators</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>An efficient technique is presented for 3-D finite element modeling of large-scale periodic excited bulk acoustic resonator (XBAR) resonators in the time-harmonic domain. In this technique, a domain decomposition scheme is used to decompose the computational domain into many small subdomains whose FE subsystems can be factorized with a direct sparse solver at a low cost. Transmission conditions (TCs) are enforced to interconnect adjacent subdomains, and a global interface system is formulated and solved iteratively. To accelerate the convergence, a second-order TC (SOTC) is designed to make the subdomain interfaces transparent for propagating and evanescent waves. An effective forward-backward preconditioner is constructed that when combined with the SOTC significantly reduce the number of iterations at no additional cost. Numerical results are given to demonstrate the accuracy, efficiency, and capability of the proposed algorithm.</description><subject>Algorithms</subject><subject>Bulk acoustic wave devices</subject><subject>Domain decomposition methods</subject><subject>Evanescent waves</subject><subject>Finite element method</subject><subject>Mathematical models</subject><subject>Resonators</subject><subject>Subsystems</subject><subject>Three dimensional models</subject><subject>Wave propagation</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRbP34Ax4k4MVL6s5-NJtjrY0KFaW04G1Jk1nZkmRrNjn4793a6sHTwMwzw7wPIVdARwA0vVuusmw6YpTxEWdJwgU7IkOQTMYqlfKYDKlSMuYU6ICceb-hFIRI2SkZ8ARSqQQdksnMGFtYbLqIxw9RZhvbYTSrsN61XlyJlW0-ImeiN2ytK20Rvd9PFtECvWvyzrX-gpyYvPJ4eajnZJXNltOneP76-DydzOOCKdbFIhVjZkACqHG6NqBELoRKoeACJWWSoiwpcjSGrg0qlGGEKiQAlYQG8nNyu7-7bd1nj77TtfUFVlXeoOu9ZipEF4oDDejNP3Tj-rYJ3wWKBww4l4Fie6ponfctGr1tbZ23Xxqo3gnWP4L1TrA-CA5L14fT_brG8m_l1yj_BkiYcyg</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Li, Hongliang</creator><creator>Koskela, Julius</creator><creator>Massey, Jackson W</creator><creator>Willemsen, Balam</creator><creator>Jin, Jian-Ming</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4937-6183</orcidid><orcidid>https://orcid.org/0000-0003-0566-3711</orcidid></search><sort><creationdate>20230701</creationdate><title>Efficient 3-D Finite Element Modeling of Periodic XBAR Resonators</title><author>Li, Hongliang ; Koskela, Julius ; Massey, Jackson W ; Willemsen, Balam ; Jin, Jian-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-49462f1511869bf184a44891c34e50250e5d0e3eff0bfe8e591ce8088187bfee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Bulk acoustic wave devices</topic><topic>Domain decomposition methods</topic><topic>Evanescent waves</topic><topic>Finite element method</topic><topic>Mathematical models</topic><topic>Resonators</topic><topic>Subsystems</topic><topic>Three dimensional models</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hongliang</creatorcontrib><creatorcontrib>Koskela, Julius</creatorcontrib><creatorcontrib>Massey, Jackson W</creatorcontrib><creatorcontrib>Willemsen, Balam</creatorcontrib><creatorcontrib>Jin, Jian-Ming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hongliang</au><au>Koskela, Julius</au><au>Massey, Jackson W</au><au>Willemsen, Balam</au><au>Jin, Jian-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient 3-D Finite Element Modeling of Periodic XBAR Resonators</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>70</volume><issue>7</issue><spage>759</spage><epage>771</epage><pages>759-771</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><abstract>An efficient technique is presented for 3-D finite element modeling of large-scale periodic excited bulk acoustic resonator (XBAR) resonators in the time-harmonic domain. In this technique, a domain decomposition scheme is used to decompose the computational domain into many small subdomains whose FE subsystems can be factorized with a direct sparse solver at a low cost. Transmission conditions (TCs) are enforced to interconnect adjacent subdomains, and a global interface system is formulated and solved iteratively. To accelerate the convergence, a second-order TC (SOTC) is designed to make the subdomain interfaces transparent for propagating and evanescent waves. An effective forward-backward preconditioner is constructed that when combined with the SOTC significantly reduce the number of iterations at no additional cost. Numerical results are given to demonstrate the accuracy, efficiency, and capability of the proposed algorithm.</abstract><cop>United States</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><pmid>37195840</pmid><doi>10.1109/TUFFC.2023.3277342</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4937-6183</orcidid><orcidid>https://orcid.org/0000-0003-0566-3711</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2023-07, Vol.70 (7), p.759-771
issn 0885-3010
1525-8955
language eng
recordid cdi_proquest_miscellaneous_2815248310
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Bulk acoustic wave devices
Domain decomposition methods
Evanescent waves
Finite element method
Mathematical models
Resonators
Subsystems
Three dimensional models
Wave propagation
title Efficient 3-D Finite Element Modeling of Periodic XBAR Resonators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A20%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%203-D%20Finite%20Element%20Modeling%20of%20Periodic%20XBAR%20Resonators&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Li,%20Hongliang&rft.date=2023-07-01&rft.volume=70&rft.issue=7&rft.spage=759&rft.epage=771&rft.pages=759-771&rft.issn=0885-3010&rft.eissn=1525-8955&rft_id=info:doi/10.1109/TUFFC.2023.3277342&rft_dat=%3Cproquest_cross%3E2831521335%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c282t-49462f1511869bf184a44891c34e50250e5d0e3eff0bfe8e591ce8088187bfee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2831521335&rft_id=info:pmid/37195840&rfr_iscdi=true