Loading…
Efficient 3-D Finite Element Modeling of Periodic XBAR Resonators
An efficient technique is presented for 3-D finite element modeling of large-scale periodic excited bulk acoustic resonator (XBAR) resonators in the time-harmonic domain. In this technique, a domain decomposition scheme is used to decompose the computational domain into many small subdomains whose F...
Saved in:
Published in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2023-07, Vol.70 (7), p.759-771 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c282t-49462f1511869bf184a44891c34e50250e5d0e3eff0bfe8e591ce8088187bfee3 |
container_end_page | 771 |
container_issue | 7 |
container_start_page | 759 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 70 |
creator | Li, Hongliang Koskela, Julius Massey, Jackson W Willemsen, Balam Jin, Jian-Ming |
description | An efficient technique is presented for 3-D finite element modeling of large-scale periodic excited bulk acoustic resonator (XBAR) resonators in the time-harmonic domain. In this technique, a domain decomposition scheme is used to decompose the computational domain into many small subdomains whose FE subsystems can be factorized with a direct sparse solver at a low cost. Transmission conditions (TCs) are enforced to interconnect adjacent subdomains, and a global interface system is formulated and solved iteratively. To accelerate the convergence, a second-order TC (SOTC) is designed to make the subdomain interfaces transparent for propagating and evanescent waves. An effective forward-backward preconditioner is constructed that when combined with the SOTC significantly reduce the number of iterations at no additional cost. Numerical results are given to demonstrate the accuracy, efficiency, and capability of the proposed algorithm. |
doi_str_mv | 10.1109/TUFFC.2023.3277342 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2815248310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2831521335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-49462f1511869bf184a44891c34e50250e5d0e3eff0bfe8e591ce8088187bfee3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbP34Ax4k4MVL6s5-NJtjrY0KFaW04G1Jk1nZkmRrNjn4793a6sHTwMwzw7wPIVdARwA0vVuusmw6YpTxEWdJwgU7IkOQTMYqlfKYDKlSMuYU6ICceb-hFIRI2SkZ8ARSqQQdksnMGFtYbLqIxw9RZhvbYTSrsN61XlyJlW0-ImeiN2ytK20Rvd9PFtECvWvyzrX-gpyYvPJ4eajnZJXNltOneP76-DydzOOCKdbFIhVjZkACqHG6NqBELoRKoeACJWWSoiwpcjSGrg0qlGGEKiQAlYQG8nNyu7-7bd1nj77TtfUFVlXeoOu9ZipEF4oDDejNP3Tj-rYJ3wWKBww4l4Fie6ponfctGr1tbZ23Xxqo3gnWP4L1TrA-CA5L14fT_brG8m_l1yj_BkiYcyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831521335</pqid></control><display><type>article</type><title>Efficient 3-D Finite Element Modeling of Periodic XBAR Resonators</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Hongliang ; Koskela, Julius ; Massey, Jackson W ; Willemsen, Balam ; Jin, Jian-Ming</creator><creatorcontrib>Li, Hongliang ; Koskela, Julius ; Massey, Jackson W ; Willemsen, Balam ; Jin, Jian-Ming</creatorcontrib><description>An efficient technique is presented for 3-D finite element modeling of large-scale periodic excited bulk acoustic resonator (XBAR) resonators in the time-harmonic domain. In this technique, a domain decomposition scheme is used to decompose the computational domain into many small subdomains whose FE subsystems can be factorized with a direct sparse solver at a low cost. Transmission conditions (TCs) are enforced to interconnect adjacent subdomains, and a global interface system is formulated and solved iteratively. To accelerate the convergence, a second-order TC (SOTC) is designed to make the subdomain interfaces transparent for propagating and evanescent waves. An effective forward-backward preconditioner is constructed that when combined with the SOTC significantly reduce the number of iterations at no additional cost. Numerical results are given to demonstrate the accuracy, efficiency, and capability of the proposed algorithm.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2023.3277342</identifier><identifier>PMID: 37195840</identifier><language>eng</language><publisher>United States: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Algorithms ; Bulk acoustic wave devices ; Domain decomposition methods ; Evanescent waves ; Finite element method ; Mathematical models ; Resonators ; Subsystems ; Three dimensional models ; Wave propagation</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2023-07, Vol.70 (7), p.759-771</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c282t-49462f1511869bf184a44891c34e50250e5d0e3eff0bfe8e591ce8088187bfee3</cites><orcidid>0000-0003-4937-6183 ; 0000-0003-0566-3711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37195840$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Hongliang</creatorcontrib><creatorcontrib>Koskela, Julius</creatorcontrib><creatorcontrib>Massey, Jackson W</creatorcontrib><creatorcontrib>Willemsen, Balam</creatorcontrib><creatorcontrib>Jin, Jian-Ming</creatorcontrib><title>Efficient 3-D Finite Element Modeling of Periodic XBAR Resonators</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>An efficient technique is presented for 3-D finite element modeling of large-scale periodic excited bulk acoustic resonator (XBAR) resonators in the time-harmonic domain. In this technique, a domain decomposition scheme is used to decompose the computational domain into many small subdomains whose FE subsystems can be factorized with a direct sparse solver at a low cost. Transmission conditions (TCs) are enforced to interconnect adjacent subdomains, and a global interface system is formulated and solved iteratively. To accelerate the convergence, a second-order TC (SOTC) is designed to make the subdomain interfaces transparent for propagating and evanescent waves. An effective forward-backward preconditioner is constructed that when combined with the SOTC significantly reduce the number of iterations at no additional cost. Numerical results are given to demonstrate the accuracy, efficiency, and capability of the proposed algorithm.</description><subject>Algorithms</subject><subject>Bulk acoustic wave devices</subject><subject>Domain decomposition methods</subject><subject>Evanescent waves</subject><subject>Finite element method</subject><subject>Mathematical models</subject><subject>Resonators</subject><subject>Subsystems</subject><subject>Three dimensional models</subject><subject>Wave propagation</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRbP34Ax4k4MVL6s5-NJtjrY0KFaW04G1Jk1nZkmRrNjn4793a6sHTwMwzw7wPIVdARwA0vVuusmw6YpTxEWdJwgU7IkOQTMYqlfKYDKlSMuYU6ICceb-hFIRI2SkZ8ARSqQQdksnMGFtYbLqIxw9RZhvbYTSrsN61XlyJlW0-ImeiN2ytK20Rvd9PFtECvWvyzrX-gpyYvPJ4eajnZJXNltOneP76-DydzOOCKdbFIhVjZkACqHG6NqBELoRKoeACJWWSoiwpcjSGrg0qlGGEKiQAlYQG8nNyu7-7bd1nj77TtfUFVlXeoOu9ZipEF4oDDejNP3Tj-rYJ3wWKBww4l4Fie6ponfctGr1tbZ23Xxqo3gnWP4L1TrA-CA5L14fT_brG8m_l1yj_BkiYcyg</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Li, Hongliang</creator><creator>Koskela, Julius</creator><creator>Massey, Jackson W</creator><creator>Willemsen, Balam</creator><creator>Jin, Jian-Ming</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4937-6183</orcidid><orcidid>https://orcid.org/0000-0003-0566-3711</orcidid></search><sort><creationdate>20230701</creationdate><title>Efficient 3-D Finite Element Modeling of Periodic XBAR Resonators</title><author>Li, Hongliang ; Koskela, Julius ; Massey, Jackson W ; Willemsen, Balam ; Jin, Jian-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-49462f1511869bf184a44891c34e50250e5d0e3eff0bfe8e591ce8088187bfee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Bulk acoustic wave devices</topic><topic>Domain decomposition methods</topic><topic>Evanescent waves</topic><topic>Finite element method</topic><topic>Mathematical models</topic><topic>Resonators</topic><topic>Subsystems</topic><topic>Three dimensional models</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hongliang</creatorcontrib><creatorcontrib>Koskela, Julius</creatorcontrib><creatorcontrib>Massey, Jackson W</creatorcontrib><creatorcontrib>Willemsen, Balam</creatorcontrib><creatorcontrib>Jin, Jian-Ming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hongliang</au><au>Koskela, Julius</au><au>Massey, Jackson W</au><au>Willemsen, Balam</au><au>Jin, Jian-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient 3-D Finite Element Modeling of Periodic XBAR Resonators</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>70</volume><issue>7</issue><spage>759</spage><epage>771</epage><pages>759-771</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><abstract>An efficient technique is presented for 3-D finite element modeling of large-scale periodic excited bulk acoustic resonator (XBAR) resonators in the time-harmonic domain. In this technique, a domain decomposition scheme is used to decompose the computational domain into many small subdomains whose FE subsystems can be factorized with a direct sparse solver at a low cost. Transmission conditions (TCs) are enforced to interconnect adjacent subdomains, and a global interface system is formulated and solved iteratively. To accelerate the convergence, a second-order TC (SOTC) is designed to make the subdomain interfaces transparent for propagating and evanescent waves. An effective forward-backward preconditioner is constructed that when combined with the SOTC significantly reduce the number of iterations at no additional cost. Numerical results are given to demonstrate the accuracy, efficiency, and capability of the proposed algorithm.</abstract><cop>United States</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><pmid>37195840</pmid><doi>10.1109/TUFFC.2023.3277342</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4937-6183</orcidid><orcidid>https://orcid.org/0000-0003-0566-3711</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2023-07, Vol.70 (7), p.759-771 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_proquest_miscellaneous_2815248310 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Bulk acoustic wave devices Domain decomposition methods Evanescent waves Finite element method Mathematical models Resonators Subsystems Three dimensional models Wave propagation |
title | Efficient 3-D Finite Element Modeling of Periodic XBAR Resonators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A20%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%203-D%20Finite%20Element%20Modeling%20of%20Periodic%20XBAR%20Resonators&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Li,%20Hongliang&rft.date=2023-07-01&rft.volume=70&rft.issue=7&rft.spage=759&rft.epage=771&rft.pages=759-771&rft.issn=0885-3010&rft.eissn=1525-8955&rft_id=info:doi/10.1109/TUFFC.2023.3277342&rft_dat=%3Cproquest_cross%3E2831521335%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c282t-49462f1511869bf184a44891c34e50250e5d0e3eff0bfe8e591ce8088187bfee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2831521335&rft_id=info:pmid/37195840&rfr_iscdi=true |