Loading…

Directional Radiative Cooling via Exceptional Epsilon-Based Microcavities

The advent of nanophotonics enables the regulation of thermal emission in the momentum domain as well as in the frequency domain. However, earlier attempts to steer thermal emission in a certain direction were restricted to a narrow spectrum or specific polarization, and thus their average (8–14 μm)...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2023-06, Vol.17 (11), p.10442-10451
Main Authors: Cho, Jin-Woo, Lee, Yun-Jo, Kim, Jae-Hyun, Hu, Run, Lee, Eungkyu, Kim, Sun-Kyung
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a333t-ff2d7a3b5f110f01e10264119ebfc4d16e46ec63a9cd6633793caa142179e1ad3
cites cdi_FETCH-LOGICAL-a333t-ff2d7a3b5f110f01e10264119ebfc4d16e46ec63a9cd6633793caa142179e1ad3
container_end_page 10451
container_issue 11
container_start_page 10442
container_title ACS nano
container_volume 17
creator Cho, Jin-Woo
Lee, Yun-Jo
Kim, Jae-Hyun
Hu, Run
Lee, Eungkyu
Kim, Sun-Kyung
description The advent of nanophotonics enables the regulation of thermal emission in the momentum domain as well as in the frequency domain. However, earlier attempts to steer thermal emission in a certain direction were restricted to a narrow spectrum or specific polarization, and thus their average (8–14 μm) emissivity (εav) and angular selectivity were nominal. Therefore, the practical uses of directional thermal emitters have remained unclarified. Here, we report broadband, polarization-irrelevant, amplified directional thermal emission from hollow microcavities covered with deep-subwavelength-thickness oxide shells. A hexagonal array of SiO2/AlOX (100/100 nm) hollow microcavities designed by Bayesian optimization exhibited εav values of 0.51–0.62 at 60°–75° and 0.29–0.32 at 5°–20°, yielding a parabolic antenna-shaped distribution. The angular selectivity peaked at 8, 9.1, 10.9, and 12 μm, which were identified as the epsilon-near-zero (via Berreman modes) and maximum-negative-permittivity (via photon-tunneling modes) wavelengths of SiO2 and AlOX, respectively, thus supporting phonon–polariton resonance mediated broadband side emission. As proof-of-concept experiments, we demonstrated that these exceptional epsilon-based microcavities could provide thermal comfort to users and practical cooling performance to optoelectronic devices.
doi_str_mv 10.1021/acsnano.3c01184
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2815248575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2815248575</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-ff2d7a3b5f110f01e10264119ebfc4d16e46ec63a9cd6633793caa142179e1ad3</originalsourceid><addsrcrecordid>eNp1kEFLw0AQRhdRbK2evUmOgqTdySa7yVFr1UJFEAVvy3QzkS1pNmaTov_eSKM3TzOH933MPMbOgU-BRzBD4yus3FQYDpDGB2wMmZAhT-Xb4d-ewIideL_hPFGpksdsJBRkWRKrMVve2oZMa12FZfCMucXW7iiYO1fa6j3YWQwWn4bqgVjU3pauCm_QUx48WtM4gzvbWvKn7KjA0tPZMCfs9W7xMn8IV0_3y_n1KkQhRBsWRZQrFOukAOAFB-r_kDFARuvCxDlIiiUZKTAzuZRCqEwYRIgjUBkB5mLCLve9deM-OvKt3lpvqCyxItd5HaWQRHGaqKRHZ3u0P9P7hgpdN3aLzZcGrn_86cGfHvz1iYuhvFtvKf_jf4X1wNUe6JN647qmt-L_rfsGCQp75w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815248575</pqid></control><display><type>article</type><title>Directional Radiative Cooling via Exceptional Epsilon-Based Microcavities</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Cho, Jin-Woo ; Lee, Yun-Jo ; Kim, Jae-Hyun ; Hu, Run ; Lee, Eungkyu ; Kim, Sun-Kyung</creator><creatorcontrib>Cho, Jin-Woo ; Lee, Yun-Jo ; Kim, Jae-Hyun ; Hu, Run ; Lee, Eungkyu ; Kim, Sun-Kyung</creatorcontrib><description>The advent of nanophotonics enables the regulation of thermal emission in the momentum domain as well as in the frequency domain. However, earlier attempts to steer thermal emission in a certain direction were restricted to a narrow spectrum or specific polarization, and thus their average (8–14 μm) emissivity (εav) and angular selectivity were nominal. Therefore, the practical uses of directional thermal emitters have remained unclarified. Here, we report broadband, polarization-irrelevant, amplified directional thermal emission from hollow microcavities covered with deep-subwavelength-thickness oxide shells. A hexagonal array of SiO2/AlOX (100/100 nm) hollow microcavities designed by Bayesian optimization exhibited εav values of 0.51–0.62 at 60°–75° and 0.29–0.32 at 5°–20°, yielding a parabolic antenna-shaped distribution. The angular selectivity peaked at 8, 9.1, 10.9, and 12 μm, which were identified as the epsilon-near-zero (via Berreman modes) and maximum-negative-permittivity (via photon-tunneling modes) wavelengths of SiO2 and AlOX, respectively, thus supporting phonon–polariton resonance mediated broadband side emission. As proof-of-concept experiments, we demonstrated that these exceptional epsilon-based microcavities could provide thermal comfort to users and practical cooling performance to optoelectronic devices.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.3c01184</identifier><identifier>PMID: 37199547</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2023-06, Vol.17 (11), p.10442-10451</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-ff2d7a3b5f110f01e10264119ebfc4d16e46ec63a9cd6633793caa142179e1ad3</citedby><cites>FETCH-LOGICAL-a333t-ff2d7a3b5f110f01e10264119ebfc4d16e46ec63a9cd6633793caa142179e1ad3</cites><orcidid>0000-0002-0211-0727 ; 0000-0002-0715-0066 ; 0000-0003-0274-9982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37199547$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cho, Jin-Woo</creatorcontrib><creatorcontrib>Lee, Yun-Jo</creatorcontrib><creatorcontrib>Kim, Jae-Hyun</creatorcontrib><creatorcontrib>Hu, Run</creatorcontrib><creatorcontrib>Lee, Eungkyu</creatorcontrib><creatorcontrib>Kim, Sun-Kyung</creatorcontrib><title>Directional Radiative Cooling via Exceptional Epsilon-Based Microcavities</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The advent of nanophotonics enables the regulation of thermal emission in the momentum domain as well as in the frequency domain. However, earlier attempts to steer thermal emission in a certain direction were restricted to a narrow spectrum or specific polarization, and thus their average (8–14 μm) emissivity (εav) and angular selectivity were nominal. Therefore, the practical uses of directional thermal emitters have remained unclarified. Here, we report broadband, polarization-irrelevant, amplified directional thermal emission from hollow microcavities covered with deep-subwavelength-thickness oxide shells. A hexagonal array of SiO2/AlOX (100/100 nm) hollow microcavities designed by Bayesian optimization exhibited εav values of 0.51–0.62 at 60°–75° and 0.29–0.32 at 5°–20°, yielding a parabolic antenna-shaped distribution. The angular selectivity peaked at 8, 9.1, 10.9, and 12 μm, which were identified as the epsilon-near-zero (via Berreman modes) and maximum-negative-permittivity (via photon-tunneling modes) wavelengths of SiO2 and AlOX, respectively, thus supporting phonon–polariton resonance mediated broadband side emission. As proof-of-concept experiments, we demonstrated that these exceptional epsilon-based microcavities could provide thermal comfort to users and practical cooling performance to optoelectronic devices.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLw0AQRhdRbK2evUmOgqTdySa7yVFr1UJFEAVvy3QzkS1pNmaTov_eSKM3TzOH933MPMbOgU-BRzBD4yus3FQYDpDGB2wMmZAhT-Xb4d-ewIideL_hPFGpksdsJBRkWRKrMVve2oZMa12FZfCMucXW7iiYO1fa6j3YWQwWn4bqgVjU3pauCm_QUx48WtM4gzvbWvKn7KjA0tPZMCfs9W7xMn8IV0_3y_n1KkQhRBsWRZQrFOukAOAFB-r_kDFARuvCxDlIiiUZKTAzuZRCqEwYRIgjUBkB5mLCLve9deM-OvKt3lpvqCyxItd5HaWQRHGaqKRHZ3u0P9P7hgpdN3aLzZcGrn_86cGfHvz1iYuhvFtvKf_jf4X1wNUe6JN647qmt-L_rfsGCQp75w</recordid><startdate>20230613</startdate><enddate>20230613</enddate><creator>Cho, Jin-Woo</creator><creator>Lee, Yun-Jo</creator><creator>Kim, Jae-Hyun</creator><creator>Hu, Run</creator><creator>Lee, Eungkyu</creator><creator>Kim, Sun-Kyung</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0211-0727</orcidid><orcidid>https://orcid.org/0000-0002-0715-0066</orcidid><orcidid>https://orcid.org/0000-0003-0274-9982</orcidid></search><sort><creationdate>20230613</creationdate><title>Directional Radiative Cooling via Exceptional Epsilon-Based Microcavities</title><author>Cho, Jin-Woo ; Lee, Yun-Jo ; Kim, Jae-Hyun ; Hu, Run ; Lee, Eungkyu ; Kim, Sun-Kyung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-ff2d7a3b5f110f01e10264119ebfc4d16e46ec63a9cd6633793caa142179e1ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Jin-Woo</creatorcontrib><creatorcontrib>Lee, Yun-Jo</creatorcontrib><creatorcontrib>Kim, Jae-Hyun</creatorcontrib><creatorcontrib>Hu, Run</creatorcontrib><creatorcontrib>Lee, Eungkyu</creatorcontrib><creatorcontrib>Kim, Sun-Kyung</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Jin-Woo</au><au>Lee, Yun-Jo</au><au>Kim, Jae-Hyun</au><au>Hu, Run</au><au>Lee, Eungkyu</au><au>Kim, Sun-Kyung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directional Radiative Cooling via Exceptional Epsilon-Based Microcavities</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2023-06-13</date><risdate>2023</risdate><volume>17</volume><issue>11</issue><spage>10442</spage><epage>10451</epage><pages>10442-10451</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The advent of nanophotonics enables the regulation of thermal emission in the momentum domain as well as in the frequency domain. However, earlier attempts to steer thermal emission in a certain direction were restricted to a narrow spectrum or specific polarization, and thus their average (8–14 μm) emissivity (εav) and angular selectivity were nominal. Therefore, the practical uses of directional thermal emitters have remained unclarified. Here, we report broadband, polarization-irrelevant, amplified directional thermal emission from hollow microcavities covered with deep-subwavelength-thickness oxide shells. A hexagonal array of SiO2/AlOX (100/100 nm) hollow microcavities designed by Bayesian optimization exhibited εav values of 0.51–0.62 at 60°–75° and 0.29–0.32 at 5°–20°, yielding a parabolic antenna-shaped distribution. The angular selectivity peaked at 8, 9.1, 10.9, and 12 μm, which were identified as the epsilon-near-zero (via Berreman modes) and maximum-negative-permittivity (via photon-tunneling modes) wavelengths of SiO2 and AlOX, respectively, thus supporting phonon–polariton resonance mediated broadband side emission. As proof-of-concept experiments, we demonstrated that these exceptional epsilon-based microcavities could provide thermal comfort to users and practical cooling performance to optoelectronic devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37199547</pmid><doi>10.1021/acsnano.3c01184</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0211-0727</orcidid><orcidid>https://orcid.org/0000-0002-0715-0066</orcidid><orcidid>https://orcid.org/0000-0003-0274-9982</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2023-06, Vol.17 (11), p.10442-10451
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2815248575
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Directional Radiative Cooling via Exceptional Epsilon-Based Microcavities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A15%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directional%20Radiative%20Cooling%20via%20Exceptional%20Epsilon-Based%20Microcavities&rft.jtitle=ACS%20nano&rft.au=Cho,%20Jin-Woo&rft.date=2023-06-13&rft.volume=17&rft.issue=11&rft.spage=10442&rft.epage=10451&rft.pages=10442-10451&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.3c01184&rft_dat=%3Cproquest_cross%3E2815248575%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a333t-ff2d7a3b5f110f01e10264119ebfc4d16e46ec63a9cd6633793caa142179e1ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2815248575&rft_id=info:pmid/37199547&rfr_iscdi=true