Loading…
Directional Radiative Cooling via Exceptional Epsilon-Based Microcavities
The advent of nanophotonics enables the regulation of thermal emission in the momentum domain as well as in the frequency domain. However, earlier attempts to steer thermal emission in a certain direction were restricted to a narrow spectrum or specific polarization, and thus their average (8–14 μm)...
Saved in:
Published in: | ACS nano 2023-06, Vol.17 (11), p.10442-10451 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a333t-ff2d7a3b5f110f01e10264119ebfc4d16e46ec63a9cd6633793caa142179e1ad3 |
---|---|
cites | cdi_FETCH-LOGICAL-a333t-ff2d7a3b5f110f01e10264119ebfc4d16e46ec63a9cd6633793caa142179e1ad3 |
container_end_page | 10451 |
container_issue | 11 |
container_start_page | 10442 |
container_title | ACS nano |
container_volume | 17 |
creator | Cho, Jin-Woo Lee, Yun-Jo Kim, Jae-Hyun Hu, Run Lee, Eungkyu Kim, Sun-Kyung |
description | The advent of nanophotonics enables the regulation of thermal emission in the momentum domain as well as in the frequency domain. However, earlier attempts to steer thermal emission in a certain direction were restricted to a narrow spectrum or specific polarization, and thus their average (8–14 μm) emissivity (εav) and angular selectivity were nominal. Therefore, the practical uses of directional thermal emitters have remained unclarified. Here, we report broadband, polarization-irrelevant, amplified directional thermal emission from hollow microcavities covered with deep-subwavelength-thickness oxide shells. A hexagonal array of SiO2/AlOX (100/100 nm) hollow microcavities designed by Bayesian optimization exhibited εav values of 0.51–0.62 at 60°–75° and 0.29–0.32 at 5°–20°, yielding a parabolic antenna-shaped distribution. The angular selectivity peaked at 8, 9.1, 10.9, and 12 μm, which were identified as the epsilon-near-zero (via Berreman modes) and maximum-negative-permittivity (via photon-tunneling modes) wavelengths of SiO2 and AlOX, respectively, thus supporting phonon–polariton resonance mediated broadband side emission. As proof-of-concept experiments, we demonstrated that these exceptional epsilon-based microcavities could provide thermal comfort to users and practical cooling performance to optoelectronic devices. |
doi_str_mv | 10.1021/acsnano.3c01184 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2815248575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2815248575</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-ff2d7a3b5f110f01e10264119ebfc4d16e46ec63a9cd6633793caa142179e1ad3</originalsourceid><addsrcrecordid>eNp1kEFLw0AQRhdRbK2evUmOgqTdySa7yVFr1UJFEAVvy3QzkS1pNmaTov_eSKM3TzOH933MPMbOgU-BRzBD4yus3FQYDpDGB2wMmZAhT-Xb4d-ewIideL_hPFGpksdsJBRkWRKrMVve2oZMa12FZfCMucXW7iiYO1fa6j3YWQwWn4bqgVjU3pauCm_QUx48WtM4gzvbWvKn7KjA0tPZMCfs9W7xMn8IV0_3y_n1KkQhRBsWRZQrFOukAOAFB-r_kDFARuvCxDlIiiUZKTAzuZRCqEwYRIgjUBkB5mLCLve9deM-OvKt3lpvqCyxItd5HaWQRHGaqKRHZ3u0P9P7hgpdN3aLzZcGrn_86cGfHvz1iYuhvFtvKf_jf4X1wNUe6JN647qmt-L_rfsGCQp75w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815248575</pqid></control><display><type>article</type><title>Directional Radiative Cooling via Exceptional Epsilon-Based Microcavities</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Cho, Jin-Woo ; Lee, Yun-Jo ; Kim, Jae-Hyun ; Hu, Run ; Lee, Eungkyu ; Kim, Sun-Kyung</creator><creatorcontrib>Cho, Jin-Woo ; Lee, Yun-Jo ; Kim, Jae-Hyun ; Hu, Run ; Lee, Eungkyu ; Kim, Sun-Kyung</creatorcontrib><description>The advent of nanophotonics enables the regulation of thermal emission in the momentum domain as well as in the frequency domain. However, earlier attempts to steer thermal emission in a certain direction were restricted to a narrow spectrum or specific polarization, and thus their average (8–14 μm) emissivity (εav) and angular selectivity were nominal. Therefore, the practical uses of directional thermal emitters have remained unclarified. Here, we report broadband, polarization-irrelevant, amplified directional thermal emission from hollow microcavities covered with deep-subwavelength-thickness oxide shells. A hexagonal array of SiO2/AlOX (100/100 nm) hollow microcavities designed by Bayesian optimization exhibited εav values of 0.51–0.62 at 60°–75° and 0.29–0.32 at 5°–20°, yielding a parabolic antenna-shaped distribution. The angular selectivity peaked at 8, 9.1, 10.9, and 12 μm, which were identified as the epsilon-near-zero (via Berreman modes) and maximum-negative-permittivity (via photon-tunneling modes) wavelengths of SiO2 and AlOX, respectively, thus supporting phonon–polariton resonance mediated broadband side emission. As proof-of-concept experiments, we demonstrated that these exceptional epsilon-based microcavities could provide thermal comfort to users and practical cooling performance to optoelectronic devices.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.3c01184</identifier><identifier>PMID: 37199547</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2023-06, Vol.17 (11), p.10442-10451</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-ff2d7a3b5f110f01e10264119ebfc4d16e46ec63a9cd6633793caa142179e1ad3</citedby><cites>FETCH-LOGICAL-a333t-ff2d7a3b5f110f01e10264119ebfc4d16e46ec63a9cd6633793caa142179e1ad3</cites><orcidid>0000-0002-0211-0727 ; 0000-0002-0715-0066 ; 0000-0003-0274-9982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37199547$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cho, Jin-Woo</creatorcontrib><creatorcontrib>Lee, Yun-Jo</creatorcontrib><creatorcontrib>Kim, Jae-Hyun</creatorcontrib><creatorcontrib>Hu, Run</creatorcontrib><creatorcontrib>Lee, Eungkyu</creatorcontrib><creatorcontrib>Kim, Sun-Kyung</creatorcontrib><title>Directional Radiative Cooling via Exceptional Epsilon-Based Microcavities</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The advent of nanophotonics enables the regulation of thermal emission in the momentum domain as well as in the frequency domain. However, earlier attempts to steer thermal emission in a certain direction were restricted to a narrow spectrum or specific polarization, and thus their average (8–14 μm) emissivity (εav) and angular selectivity were nominal. Therefore, the practical uses of directional thermal emitters have remained unclarified. Here, we report broadband, polarization-irrelevant, amplified directional thermal emission from hollow microcavities covered with deep-subwavelength-thickness oxide shells. A hexagonal array of SiO2/AlOX (100/100 nm) hollow microcavities designed by Bayesian optimization exhibited εav values of 0.51–0.62 at 60°–75° and 0.29–0.32 at 5°–20°, yielding a parabolic antenna-shaped distribution. The angular selectivity peaked at 8, 9.1, 10.9, and 12 μm, which were identified as the epsilon-near-zero (via Berreman modes) and maximum-negative-permittivity (via photon-tunneling modes) wavelengths of SiO2 and AlOX, respectively, thus supporting phonon–polariton resonance mediated broadband side emission. As proof-of-concept experiments, we demonstrated that these exceptional epsilon-based microcavities could provide thermal comfort to users and practical cooling performance to optoelectronic devices.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLw0AQRhdRbK2evUmOgqTdySa7yVFr1UJFEAVvy3QzkS1pNmaTov_eSKM3TzOH933MPMbOgU-BRzBD4yus3FQYDpDGB2wMmZAhT-Xb4d-ewIideL_hPFGpksdsJBRkWRKrMVve2oZMa12FZfCMucXW7iiYO1fa6j3YWQwWn4bqgVjU3pauCm_QUx48WtM4gzvbWvKn7KjA0tPZMCfs9W7xMn8IV0_3y_n1KkQhRBsWRZQrFOukAOAFB-r_kDFARuvCxDlIiiUZKTAzuZRCqEwYRIgjUBkB5mLCLve9deM-OvKt3lpvqCyxItd5HaWQRHGaqKRHZ3u0P9P7hgpdN3aLzZcGrn_86cGfHvz1iYuhvFtvKf_jf4X1wNUe6JN647qmt-L_rfsGCQp75w</recordid><startdate>20230613</startdate><enddate>20230613</enddate><creator>Cho, Jin-Woo</creator><creator>Lee, Yun-Jo</creator><creator>Kim, Jae-Hyun</creator><creator>Hu, Run</creator><creator>Lee, Eungkyu</creator><creator>Kim, Sun-Kyung</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0211-0727</orcidid><orcidid>https://orcid.org/0000-0002-0715-0066</orcidid><orcidid>https://orcid.org/0000-0003-0274-9982</orcidid></search><sort><creationdate>20230613</creationdate><title>Directional Radiative Cooling via Exceptional Epsilon-Based Microcavities</title><author>Cho, Jin-Woo ; Lee, Yun-Jo ; Kim, Jae-Hyun ; Hu, Run ; Lee, Eungkyu ; Kim, Sun-Kyung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-ff2d7a3b5f110f01e10264119ebfc4d16e46ec63a9cd6633793caa142179e1ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Jin-Woo</creatorcontrib><creatorcontrib>Lee, Yun-Jo</creatorcontrib><creatorcontrib>Kim, Jae-Hyun</creatorcontrib><creatorcontrib>Hu, Run</creatorcontrib><creatorcontrib>Lee, Eungkyu</creatorcontrib><creatorcontrib>Kim, Sun-Kyung</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Jin-Woo</au><au>Lee, Yun-Jo</au><au>Kim, Jae-Hyun</au><au>Hu, Run</au><au>Lee, Eungkyu</au><au>Kim, Sun-Kyung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directional Radiative Cooling via Exceptional Epsilon-Based Microcavities</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2023-06-13</date><risdate>2023</risdate><volume>17</volume><issue>11</issue><spage>10442</spage><epage>10451</epage><pages>10442-10451</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The advent of nanophotonics enables the regulation of thermal emission in the momentum domain as well as in the frequency domain. However, earlier attempts to steer thermal emission in a certain direction were restricted to a narrow spectrum or specific polarization, and thus their average (8–14 μm) emissivity (εav) and angular selectivity were nominal. Therefore, the practical uses of directional thermal emitters have remained unclarified. Here, we report broadband, polarization-irrelevant, amplified directional thermal emission from hollow microcavities covered with deep-subwavelength-thickness oxide shells. A hexagonal array of SiO2/AlOX (100/100 nm) hollow microcavities designed by Bayesian optimization exhibited εav values of 0.51–0.62 at 60°–75° and 0.29–0.32 at 5°–20°, yielding a parabolic antenna-shaped distribution. The angular selectivity peaked at 8, 9.1, 10.9, and 12 μm, which were identified as the epsilon-near-zero (via Berreman modes) and maximum-negative-permittivity (via photon-tunneling modes) wavelengths of SiO2 and AlOX, respectively, thus supporting phonon–polariton resonance mediated broadband side emission. As proof-of-concept experiments, we demonstrated that these exceptional epsilon-based microcavities could provide thermal comfort to users and practical cooling performance to optoelectronic devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37199547</pmid><doi>10.1021/acsnano.3c01184</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0211-0727</orcidid><orcidid>https://orcid.org/0000-0002-0715-0066</orcidid><orcidid>https://orcid.org/0000-0003-0274-9982</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2023-06, Vol.17 (11), p.10442-10451 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_2815248575 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Directional Radiative Cooling via Exceptional Epsilon-Based Microcavities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A15%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directional%20Radiative%20Cooling%20via%20Exceptional%20Epsilon-Based%20Microcavities&rft.jtitle=ACS%20nano&rft.au=Cho,%20Jin-Woo&rft.date=2023-06-13&rft.volume=17&rft.issue=11&rft.spage=10442&rft.epage=10451&rft.pages=10442-10451&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.3c01184&rft_dat=%3Cproquest_cross%3E2815248575%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a333t-ff2d7a3b5f110f01e10264119ebfc4d16e46ec63a9cd6633793caa142179e1ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2815248575&rft_id=info:pmid/37199547&rfr_iscdi=true |