Loading…

Local phonon imaging of AlN nanostructures with nanoscale spatial resolution

We demonstrate local phonon analysis of single AlN nanocrystals by two complementary imaging spectroscopic techniques: tip-enhanced Raman scattering (TERS) and nano-Fourier transform infrared (nano-FTIR) spectroscopy. Strong surface optical (SO) phonon modes appear in the TERS spectra with their int...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale advances 2023-05, Vol.5 (1), p.282-283
Main Authors: Milekhin, Ilya, Anikin, Kirill, Kurus, Nina N, Mansurov, Vladimir G, Malin, Timur V, Zhuravlev, Konstantin S, Milekhin, Alexander G, Latyshev, Alexander V, Zahn, Dietrich R. T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We demonstrate local phonon analysis of single AlN nanocrystals by two complementary imaging spectroscopic techniques: tip-enhanced Raman scattering (TERS) and nano-Fourier transform infrared (nano-FTIR) spectroscopy. Strong surface optical (SO) phonon modes appear in the TERS spectra with their intensities revealing a weak polarization dependence. The local electric field enhancement stemming from the plasmon mode of the TERS tip modifies the phonon response of the sample, making the SO mode dominate over other phonon modes. The TERS imaging allows the spatial localization of the SO mode to be visualized. We were able to probe the angle anisotropy on the SO phonon modes in AlN nanocrystals with nanoscale spatial resolution. The excitation geometry and the local nanostructure surface profile determine the frequency position of SO modes in nano-FTIR spectra. An analytical calculation explains the behaviour of SO mode frequencies vs. tip position with respect to the sample. We demonstrate local phonon analysis of single AlN nanocrystals by two complementary imaging spectroscopic techniques: tip-enhanced Raman scattering (TERS) and nano-Fourier transform infrared (nano-FTIR) spectroscopy.
ISSN:2516-0230
2516-0230
DOI:10.1039/d3na00054k