Loading…

Thin-film persistent current switch

We have developed a fast, low power heat switch for switching a niobium thin film between the normal and superconducting state. The sputtered niobium film (400 nm thick, 100 /spl mu/m wide) has a critical current density of 5/spl times/10/sup 10/ Am/sup -2/. Switching is produced by joule heating a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on applied superconductivity 2005-09, Vol.15 (3), p.3821-3826
Main Authors: Balchandani, P., Torii, R.H., Shile, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c415t-8234eb24b3f94ae026b931e9817e0dbd1e0e03149f3f0c98aade8c4107d83fd23
cites cdi_FETCH-LOGICAL-c415t-8234eb24b3f94ae026b931e9817e0dbd1e0e03149f3f0c98aade8c4107d83fd23
container_end_page 3826
container_issue 3
container_start_page 3821
container_title IEEE transactions on applied superconductivity
container_volume 15
creator Balchandani, P.
Torii, R.H.
Shile, R.
description We have developed a fast, low power heat switch for switching a niobium thin film between the normal and superconducting state. The sputtered niobium film (400 nm thick, 100 /spl mu/m wide) has a critical current density of 5/spl times/10/sup 10/ Am/sup -2/. Switching is produced by joule heating a small section of the niobium film with a titanium thin-film resistor. With the heat switch in vacuum, the minimum heater power needed to switch to the normal state was 4.5/spl times/10/sup -5/ W. A simple three-dimensional thermal model shows that the minimum power is primarily determined by the thermal conductivity of the substrate. We have achieved response times less than 10/sup -6/ s.
doi_str_mv 10.1109/TASC.2005.847491
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_28169266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1504852</ieee_id><sourcerecordid>2543678451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-8234eb24b3f94ae026b931e9817e0dbd1e0e03149f3f0c98aade8c4107d83fd23</originalsourceid><addsrcrecordid>eNqNkc1Lw0AQxYMoWKt3wUtRFC-pM_uR7B5L8QsKHqznZZNMaEqa1N0U8b93QwoFD-LpDczvPZh5UXSJMEUE_bCcvc-nDEBOlUiFxqNohFKqmEmUx2EGibFijJ9GZ96vAVAoIUfRzXJVNXFZ1ZvJlpyvfEdNN8l3zvXqv6ouX51HJ6WtPV3sdRx9PD0u5y_x4u35dT5bxLlA2YV0LihjIuOlFpaAJZnmSFphSlBkBRIQcBS65CXkWllbkApWSAvFy4LxcXQ35G5d-7kj35lN5XOqa9tQu_OGKUw0S5L_gJCg4AG8_xNEnoT3CCF79PoXum53rgn3Go0MVJpAGiAYoNy13jsqzdZVG-u-DYLpazB9DaavwQw1BMvtPtf63Nals01e-YMvxeATInBXA1cR0WEtQSjJ-A_cDo2L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912087607</pqid></control><display><type>article</type><title>Thin-film persistent current switch</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Balchandani, P. ; Torii, R.H. ; Shile, R.</creator><creatorcontrib>Balchandani, P. ; Torii, R.H. ; Shile, R.</creatorcontrib><description>We have developed a fast, low power heat switch for switching a niobium thin film between the normal and superconducting state. The sputtered niobium film (400 nm thick, 100 /spl mu/m wide) has a critical current density of 5/spl times/10/sup 10/ Am/sup -2/. Switching is produced by joule heating a small section of the niobium film with a titanium thin-film resistor. With the heat switch in vacuum, the minimum heater power needed to switch to the normal state was 4.5/spl times/10/sup -5/ W. A simple three-dimensional thermal model shows that the minimum power is primarily determined by the thermal conductivity of the substrate. We have achieved response times less than 10/sup -6/ s.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2005.847491</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Critical current density ; Current injection ; current switch ; Electronics ; Exact sciences and technology ; heat switch ; Heat switches ; Heating ; Niobium ; Persistent currents ; Resistors ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Sputtering ; Superconducting devices ; Superconducting films ; Superconducting thin films ; Superconductivity ; Switches ; Switching ; Thermal conductivity ; thin film ; Thin films ; Three dimensional models ; Transistors</subject><ispartof>IEEE transactions on applied superconductivity, 2005-09, Vol.15 (3), p.3821-3826</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-8234eb24b3f94ae026b931e9817e0dbd1e0e03149f3f0c98aade8c4107d83fd23</citedby><cites>FETCH-LOGICAL-c415t-8234eb24b3f94ae026b931e9817e0dbd1e0e03149f3f0c98aade8c4107d83fd23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1504852$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17111044$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Balchandani, P.</creatorcontrib><creatorcontrib>Torii, R.H.</creatorcontrib><creatorcontrib>Shile, R.</creatorcontrib><title>Thin-film persistent current switch</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>We have developed a fast, low power heat switch for switching a niobium thin film between the normal and superconducting state. The sputtered niobium film (400 nm thick, 100 /spl mu/m wide) has a critical current density of 5/spl times/10/sup 10/ Am/sup -2/. Switching is produced by joule heating a small section of the niobium film with a titanium thin-film resistor. With the heat switch in vacuum, the minimum heater power needed to switch to the normal state was 4.5/spl times/10/sup -5/ W. A simple three-dimensional thermal model shows that the minimum power is primarily determined by the thermal conductivity of the substrate. We have achieved response times less than 10/sup -6/ s.</description><subject>Applied sciences</subject><subject>Critical current density</subject><subject>Current injection</subject><subject>current switch</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>heat switch</subject><subject>Heat switches</subject><subject>Heating</subject><subject>Niobium</subject><subject>Persistent currents</subject><subject>Resistors</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Sputtering</subject><subject>Superconducting devices</subject><subject>Superconducting films</subject><subject>Superconducting thin films</subject><subject>Superconductivity</subject><subject>Switches</subject><subject>Switching</subject><subject>Thermal conductivity</subject><subject>thin film</subject><subject>Thin films</subject><subject>Three dimensional models</subject><subject>Transistors</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkc1Lw0AQxYMoWKt3wUtRFC-pM_uR7B5L8QsKHqznZZNMaEqa1N0U8b93QwoFD-LpDczvPZh5UXSJMEUE_bCcvc-nDEBOlUiFxqNohFKqmEmUx2EGibFijJ9GZ96vAVAoIUfRzXJVNXFZ1ZvJlpyvfEdNN8l3zvXqv6ouX51HJ6WtPV3sdRx9PD0u5y_x4u35dT5bxLlA2YV0LihjIuOlFpaAJZnmSFphSlBkBRIQcBS65CXkWllbkApWSAvFy4LxcXQ35G5d-7kj35lN5XOqa9tQu_OGKUw0S5L_gJCg4AG8_xNEnoT3CCF79PoXum53rgn3Go0MVJpAGiAYoNy13jsqzdZVG-u-DYLpazB9DaavwQw1BMvtPtf63Nals01e-YMvxeATInBXA1cR0WEtQSjJ-A_cDo2L</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>Balchandani, P.</creator><creator>Torii, R.H.</creator><creator>Shile, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>8BQ</scope><scope>H8D</scope><scope>JG9</scope></search><sort><creationdate>20050901</creationdate><title>Thin-film persistent current switch</title><author>Balchandani, P. ; Torii, R.H. ; Shile, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-8234eb24b3f94ae026b931e9817e0dbd1e0e03149f3f0c98aade8c4107d83fd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Critical current density</topic><topic>Current injection</topic><topic>current switch</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>heat switch</topic><topic>Heat switches</topic><topic>Heating</topic><topic>Niobium</topic><topic>Persistent currents</topic><topic>Resistors</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Sputtering</topic><topic>Superconducting devices</topic><topic>Superconducting films</topic><topic>Superconducting thin films</topic><topic>Superconductivity</topic><topic>Switches</topic><topic>Switching</topic><topic>Thermal conductivity</topic><topic>thin film</topic><topic>Thin films</topic><topic>Three dimensional models</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balchandani, P.</creatorcontrib><creatorcontrib>Torii, R.H.</creatorcontrib><creatorcontrib>Shile, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>METADEX</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balchandani, P.</au><au>Torii, R.H.</au><au>Shile, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thin-film persistent current switch</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2005-09-01</date><risdate>2005</risdate><volume>15</volume><issue>3</issue><spage>3821</spage><epage>3826</epage><pages>3821-3826</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>We have developed a fast, low power heat switch for switching a niobium thin film between the normal and superconducting state. The sputtered niobium film (400 nm thick, 100 /spl mu/m wide) has a critical current density of 5/spl times/10/sup 10/ Am/sup -2/. Switching is produced by joule heating a small section of the niobium film with a titanium thin-film resistor. With the heat switch in vacuum, the minimum heater power needed to switch to the normal state was 4.5/spl times/10/sup -5/ W. A simple three-dimensional thermal model shows that the minimum power is primarily determined by the thermal conductivity of the substrate. We have achieved response times less than 10/sup -6/ s.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2005.847491</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2005-09, Vol.15 (3), p.3821-3826
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_miscellaneous_28169266
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Critical current density
Current injection
current switch
Electronics
Exact sciences and technology
heat switch
Heat switches
Heating
Niobium
Persistent currents
Resistors
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Sputtering
Superconducting devices
Superconducting films
Superconducting thin films
Superconductivity
Switches
Switching
Thermal conductivity
thin film
Thin films
Three dimensional models
Transistors
title Thin-film persistent current switch
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thin-film%20persistent%20current%20switch&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Balchandani,%20P.&rft.date=2005-09-01&rft.volume=15&rft.issue=3&rft.spage=3821&rft.epage=3826&rft.pages=3821-3826&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2005.847491&rft_dat=%3Cproquest_pasca%3E2543678451%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-8234eb24b3f94ae026b931e9817e0dbd1e0e03149f3f0c98aade8c4107d83fd23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912087607&rft_id=info:pmid/&rft_ieee_id=1504852&rfr_iscdi=true