Loading…
Thin-film persistent current switch
We have developed a fast, low power heat switch for switching a niobium thin film between the normal and superconducting state. The sputtered niobium film (400 nm thick, 100 /spl mu/m wide) has a critical current density of 5/spl times/10/sup 10/ Am/sup -2/. Switching is produced by joule heating a...
Saved in:
Published in: | IEEE transactions on applied superconductivity 2005-09, Vol.15 (3), p.3821-3826 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c415t-8234eb24b3f94ae026b931e9817e0dbd1e0e03149f3f0c98aade8c4107d83fd23 |
---|---|
cites | cdi_FETCH-LOGICAL-c415t-8234eb24b3f94ae026b931e9817e0dbd1e0e03149f3f0c98aade8c4107d83fd23 |
container_end_page | 3826 |
container_issue | 3 |
container_start_page | 3821 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 15 |
creator | Balchandani, P. Torii, R.H. Shile, R. |
description | We have developed a fast, low power heat switch for switching a niobium thin film between the normal and superconducting state. The sputtered niobium film (400 nm thick, 100 /spl mu/m wide) has a critical current density of 5/spl times/10/sup 10/ Am/sup -2/. Switching is produced by joule heating a small section of the niobium film with a titanium thin-film resistor. With the heat switch in vacuum, the minimum heater power needed to switch to the normal state was 4.5/spl times/10/sup -5/ W. A simple three-dimensional thermal model shows that the minimum power is primarily determined by the thermal conductivity of the substrate. We have achieved response times less than 10/sup -6/ s. |
doi_str_mv | 10.1109/TASC.2005.847491 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_28169266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1504852</ieee_id><sourcerecordid>2543678451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-8234eb24b3f94ae026b931e9817e0dbd1e0e03149f3f0c98aade8c4107d83fd23</originalsourceid><addsrcrecordid>eNqNkc1Lw0AQxYMoWKt3wUtRFC-pM_uR7B5L8QsKHqznZZNMaEqa1N0U8b93QwoFD-LpDczvPZh5UXSJMEUE_bCcvc-nDEBOlUiFxqNohFKqmEmUx2EGibFijJ9GZ96vAVAoIUfRzXJVNXFZ1ZvJlpyvfEdNN8l3zvXqv6ouX51HJ6WtPV3sdRx9PD0u5y_x4u35dT5bxLlA2YV0LihjIuOlFpaAJZnmSFphSlBkBRIQcBS65CXkWllbkApWSAvFy4LxcXQ35G5d-7kj35lN5XOqa9tQu_OGKUw0S5L_gJCg4AG8_xNEnoT3CCF79PoXum53rgn3Go0MVJpAGiAYoNy13jsqzdZVG-u-DYLpazB9DaavwQw1BMvtPtf63Nals01e-YMvxeATInBXA1cR0WEtQSjJ-A_cDo2L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912087607</pqid></control><display><type>article</type><title>Thin-film persistent current switch</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Balchandani, P. ; Torii, R.H. ; Shile, R.</creator><creatorcontrib>Balchandani, P. ; Torii, R.H. ; Shile, R.</creatorcontrib><description>We have developed a fast, low power heat switch for switching a niobium thin film between the normal and superconducting state. The sputtered niobium film (400 nm thick, 100 /spl mu/m wide) has a critical current density of 5/spl times/10/sup 10/ Am/sup -2/. Switching is produced by joule heating a small section of the niobium film with a titanium thin-film resistor. With the heat switch in vacuum, the minimum heater power needed to switch to the normal state was 4.5/spl times/10/sup -5/ W. A simple three-dimensional thermal model shows that the minimum power is primarily determined by the thermal conductivity of the substrate. We have achieved response times less than 10/sup -6/ s.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2005.847491</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Critical current density ; Current injection ; current switch ; Electronics ; Exact sciences and technology ; heat switch ; Heat switches ; Heating ; Niobium ; Persistent currents ; Resistors ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Sputtering ; Superconducting devices ; Superconducting films ; Superconducting thin films ; Superconductivity ; Switches ; Switching ; Thermal conductivity ; thin film ; Thin films ; Three dimensional models ; Transistors</subject><ispartof>IEEE transactions on applied superconductivity, 2005-09, Vol.15 (3), p.3821-3826</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-8234eb24b3f94ae026b931e9817e0dbd1e0e03149f3f0c98aade8c4107d83fd23</citedby><cites>FETCH-LOGICAL-c415t-8234eb24b3f94ae026b931e9817e0dbd1e0e03149f3f0c98aade8c4107d83fd23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1504852$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17111044$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Balchandani, P.</creatorcontrib><creatorcontrib>Torii, R.H.</creatorcontrib><creatorcontrib>Shile, R.</creatorcontrib><title>Thin-film persistent current switch</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>We have developed a fast, low power heat switch for switching a niobium thin film between the normal and superconducting state. The sputtered niobium film (400 nm thick, 100 /spl mu/m wide) has a critical current density of 5/spl times/10/sup 10/ Am/sup -2/. Switching is produced by joule heating a small section of the niobium film with a titanium thin-film resistor. With the heat switch in vacuum, the minimum heater power needed to switch to the normal state was 4.5/spl times/10/sup -5/ W. A simple three-dimensional thermal model shows that the minimum power is primarily determined by the thermal conductivity of the substrate. We have achieved response times less than 10/sup -6/ s.</description><subject>Applied sciences</subject><subject>Critical current density</subject><subject>Current injection</subject><subject>current switch</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>heat switch</subject><subject>Heat switches</subject><subject>Heating</subject><subject>Niobium</subject><subject>Persistent currents</subject><subject>Resistors</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Sputtering</subject><subject>Superconducting devices</subject><subject>Superconducting films</subject><subject>Superconducting thin films</subject><subject>Superconductivity</subject><subject>Switches</subject><subject>Switching</subject><subject>Thermal conductivity</subject><subject>thin film</subject><subject>Thin films</subject><subject>Three dimensional models</subject><subject>Transistors</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkc1Lw0AQxYMoWKt3wUtRFC-pM_uR7B5L8QsKHqznZZNMaEqa1N0U8b93QwoFD-LpDczvPZh5UXSJMEUE_bCcvc-nDEBOlUiFxqNohFKqmEmUx2EGibFijJ9GZ96vAVAoIUfRzXJVNXFZ1ZvJlpyvfEdNN8l3zvXqv6ouX51HJ6WtPV3sdRx9PD0u5y_x4u35dT5bxLlA2YV0LihjIuOlFpaAJZnmSFphSlBkBRIQcBS65CXkWllbkApWSAvFy4LxcXQ35G5d-7kj35lN5XOqa9tQu_OGKUw0S5L_gJCg4AG8_xNEnoT3CCF79PoXum53rgn3Go0MVJpAGiAYoNy13jsqzdZVG-u-DYLpazB9DaavwQw1BMvtPtf63Nals01e-YMvxeATInBXA1cR0WEtQSjJ-A_cDo2L</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>Balchandani, P.</creator><creator>Torii, R.H.</creator><creator>Shile, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>8BQ</scope><scope>H8D</scope><scope>JG9</scope></search><sort><creationdate>20050901</creationdate><title>Thin-film persistent current switch</title><author>Balchandani, P. ; Torii, R.H. ; Shile, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-8234eb24b3f94ae026b931e9817e0dbd1e0e03149f3f0c98aade8c4107d83fd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Critical current density</topic><topic>Current injection</topic><topic>current switch</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>heat switch</topic><topic>Heat switches</topic><topic>Heating</topic><topic>Niobium</topic><topic>Persistent currents</topic><topic>Resistors</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Sputtering</topic><topic>Superconducting devices</topic><topic>Superconducting films</topic><topic>Superconducting thin films</topic><topic>Superconductivity</topic><topic>Switches</topic><topic>Switching</topic><topic>Thermal conductivity</topic><topic>thin film</topic><topic>Thin films</topic><topic>Three dimensional models</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balchandani, P.</creatorcontrib><creatorcontrib>Torii, R.H.</creatorcontrib><creatorcontrib>Shile, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>METADEX</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balchandani, P.</au><au>Torii, R.H.</au><au>Shile, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thin-film persistent current switch</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2005-09-01</date><risdate>2005</risdate><volume>15</volume><issue>3</issue><spage>3821</spage><epage>3826</epage><pages>3821-3826</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>We have developed a fast, low power heat switch for switching a niobium thin film between the normal and superconducting state. The sputtered niobium film (400 nm thick, 100 /spl mu/m wide) has a critical current density of 5/spl times/10/sup 10/ Am/sup -2/. Switching is produced by joule heating a small section of the niobium film with a titanium thin-film resistor. With the heat switch in vacuum, the minimum heater power needed to switch to the normal state was 4.5/spl times/10/sup -5/ W. A simple three-dimensional thermal model shows that the minimum power is primarily determined by the thermal conductivity of the substrate. We have achieved response times less than 10/sup -6/ s.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2005.847491</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2005-09, Vol.15 (3), p.3821-3826 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_proquest_miscellaneous_28169266 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Critical current density Current injection current switch Electronics Exact sciences and technology heat switch Heat switches Heating Niobium Persistent currents Resistors Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Sputtering Superconducting devices Superconducting films Superconducting thin films Superconductivity Switches Switching Thermal conductivity thin film Thin films Three dimensional models Transistors |
title | Thin-film persistent current switch |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thin-film%20persistent%20current%20switch&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Balchandani,%20P.&rft.date=2005-09-01&rft.volume=15&rft.issue=3&rft.spage=3821&rft.epage=3826&rft.pages=3821-3826&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2005.847491&rft_dat=%3Cproquest_pasca%3E2543678451%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-8234eb24b3f94ae026b931e9817e0dbd1e0e03149f3f0c98aade8c4107d83fd23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912087607&rft_id=info:pmid/&rft_ieee_id=1504852&rfr_iscdi=true |