Loading…
A front-tracking/front-capturing method for the simulation of 3D multi-fluid flows with free surfaces
A method for simulating incompressible, imiscible, unsteady, Newtonian, multi-fluid flows with free surfaces is described. A sharp interface separates fluids of different density and viscosity. Surface and interfacial tensions are also considered and the required curvature is geometrically approxima...
Saved in:
Published in: | Journal of computational physics 2004-08, Vol.198 (2), p.469-499 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A method for simulating incompressible, imiscible, unsteady, Newtonian, multi-fluid flows with free surfaces is described. A sharp interface separates fluids of different density and viscosity. Surface and interfacial tensions are also considered and the required curvature is geometrically approximated at the fronts by a least squares quadratic fitting. To remove small undulations at the fronts, a mass-conserving filter is employed. The numerical method employed to solve the Navier–Stokes equations is based on the GENSMAC-3D front-tracking method. The velocity field is computed using a finite-difference scheme on an Eulerian grid. The free-surface and the interfaces are represented by an unstructured Lagrangian grid moving through an Eulerian grid. The method was validated by comparing the numerical results with analytical results for a number of simple problems. Complex numerical simulations show the capability and emphasize the robustness of this new method. |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2004.01.032 |