Loading…

Broad-band millimeter-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects

A spectrally efficient millimeter-wave (mm-wave) fiber-wireless transmission system is presented demonstrating downstream transportation of 155-Mb/s BPSK data at 38 GHz over 50 km of standard single-mode fiber and a 5-m wireless link. The effect of fiber chromatic dispersion on the transmission of t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE photonics technology letters 1998-01, Vol.10 (1), p.141-143
Main Authors: Smith, G.H., Novak, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A spectrally efficient millimeter-wave (mm-wave) fiber-wireless transmission system is presented demonstrating downstream transportation of 155-Mb/s BPSK data at 38 GHz over 50 km of standard single-mode fiber and a 5-m wireless link. The effect of fiber chromatic dispersion on the transmission of the mm-wave optical carrier was overcome by using a single dual-electrode Mach-Zehnder modulator to generate optical single-sideband (SSB) modulation with carrier. We also demonstrate a simple technique for obtaining electrical SSB that will allow the effect of fiber dispersion across the bandwidth of the information to be overcome with simple electrical delay equalization. We predict that this fiber-wireless system could permit the transportation of mm-wave signals with large bit rates over long optical fiber distances.
ISSN:1041-1135
1941-0174
DOI:10.1109/68.651139