Loading…

Filament winding. Part 2: generic kinematic model and its solutions

This paper (Part II) provides the continuation of ‘Filament Winding Part I’. The main issue in Part II is the formulation and solution of the kinematic equations associated with filament winding. The basic geometry is a generic one; this implies that the method presented here should be suitable to d...

Full description

Saved in:
Bibliographic Details
Published in:Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2004-01, Vol.35 (2), p.197-212
Main Authors: Koussios, S., Bergsma, O.K., Beukers, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-53569d3f507631774916b80a155b307879fa08ef974fdfe3ce300beedafe5edb3
cites cdi_FETCH-LOGICAL-c380t-53569d3f507631774916b80a155b307879fa08ef974fdfe3ce300beedafe5edb3
container_end_page 212
container_issue 2
container_start_page 197
container_title Composites. Part A, Applied science and manufacturing
container_volume 35
creator Koussios, S.
Bergsma, O.K.
Beukers, A.
description This paper (Part II) provides the continuation of ‘Filament Winding Part I’. The main issue in Part II is the formulation and solution of the kinematic equations associated with filament winding. The basic geometry is a generic one; this implies that the method presented here should be suitable to deal with every possible winding machine configuration. However, in order to create a well-determined solution, various assumptions have been made, mainly regarding the coupling between the involved machine movements (translations and rotations). These couplings should preferably be derived by optimisation techniques. The solution method presented here can be characterised by robustness, improved accuracy and short calculation times. These properties make the method suitable for optimisation purposes. The obtained results clearly indicate that for a particular wound object geometry, the most suitable winding machine configuration is not always the lathe winder. In addition, the use of a lathe winder without cross-carriage is generally not feasible due to excessive feed eye translations.
doi_str_mv 10.1016/j.compositesa.2003.10.004
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28176052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359835X03003208</els_id><sourcerecordid>28176052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-53569d3f507631774916b80a155b307879fa08ef974fdfe3ce300beedafe5edb3</originalsourceid><addsrcrecordid>eNqNkEFrGzEQhZeSQB2n_2F7SG-7Ha2slTa3YOqmYEgPDfQmtNLIyN2VHEluyL-vjAPpMad5zHwzj3lV9ZlAS4D0X_etDvMhJJcxqbYDoKXfAqw-VAsiuGiYWMFF0ZQNjaDs98fqKqU9FJAOZFGtN25SM_pcPztvnN-19U8Vc93d1jv0GJ2u_ziPs8pFzcHgVCtvapdTncJ0zC74dF1dWjUl_PRal9Xj5tuv9X2zffj-Y323bTQVkBtGWT8YahnwnhLOVwPpRwGKMDZS4IIPVoFAO_CVNRapRgowIhplkaEZ6bL6cr57iOHpiCnL2SWN06Q8hmOSnSC8B9YVcDiDOoaUIlp5iG5W8UUSkKfY5F7-F5s8xXYaldjK7s2riUpaTTYqr116O8Ao78TACrc-c1g-_uswyqQdeo3GRdRZmuDe4fYP2GmJXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28176052</pqid></control><display><type>article</type><title>Filament winding. Part 2: generic kinematic model and its solutions</title><source>ScienceDirect Journals</source><creator>Koussios, S. ; Bergsma, O.K. ; Beukers, A.</creator><creatorcontrib>Koussios, S. ; Bergsma, O.K. ; Beukers, A.</creatorcontrib><description>This paper (Part II) provides the continuation of ‘Filament Winding Part I’. The main issue in Part II is the formulation and solution of the kinematic equations associated with filament winding. The basic geometry is a generic one; this implies that the method presented here should be suitable to deal with every possible winding machine configuration. However, in order to create a well-determined solution, various assumptions have been made, mainly regarding the coupling between the involved machine movements (translations and rotations). These couplings should preferably be derived by optimisation techniques. The solution method presented here can be characterised by robustness, improved accuracy and short calculation times. These properties make the method suitable for optimisation purposes. The obtained results clearly indicate that for a particular wound object geometry, the most suitable winding machine configuration is not always the lathe winder. In addition, the use of a lathe winder without cross-carriage is generally not feasible due to excessive feed eye translations.</description><identifier>ISSN: 1359-835X</identifier><identifier>EISSN: 1878-5840</identifier><identifier>DOI: 10.1016/j.compositesa.2003.10.004</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>A. Fibres ; Applied sciences ; Composites ; E. Filament winding: C. Analytical modelling ; Exact sciences and technology ; Forms of application and semi-finished materials ; Fundamental areas of phenomenology (including applications) ; Mechanical engineering. Machine design ; Physics ; Polymer industry, paints, wood ; Solid mechanics ; Static elasticity ; Static elasticity (thermoelasticity...) ; Steel design ; Steel tanks and pressure vessels; boiler manufacturing ; Structural and continuum mechanics ; Technology of polymers</subject><ispartof>Composites. Part A, Applied science and manufacturing, 2004-01, Vol.35 (2), p.197-212</ispartof><rights>2003 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-53569d3f507631774916b80a155b307879fa08ef974fdfe3ce300beedafe5edb3</citedby><cites>FETCH-LOGICAL-c380t-53569d3f507631774916b80a155b307879fa08ef974fdfe3ce300beedafe5edb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15372895$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Koussios, S.</creatorcontrib><creatorcontrib>Bergsma, O.K.</creatorcontrib><creatorcontrib>Beukers, A.</creatorcontrib><title>Filament winding. Part 2: generic kinematic model and its solutions</title><title>Composites. Part A, Applied science and manufacturing</title><description>This paper (Part II) provides the continuation of ‘Filament Winding Part I’. The main issue in Part II is the formulation and solution of the kinematic equations associated with filament winding. The basic geometry is a generic one; this implies that the method presented here should be suitable to deal with every possible winding machine configuration. However, in order to create a well-determined solution, various assumptions have been made, mainly regarding the coupling between the involved machine movements (translations and rotations). These couplings should preferably be derived by optimisation techniques. The solution method presented here can be characterised by robustness, improved accuracy and short calculation times. These properties make the method suitable for optimisation purposes. The obtained results clearly indicate that for a particular wound object geometry, the most suitable winding machine configuration is not always the lathe winder. In addition, the use of a lathe winder without cross-carriage is generally not feasible due to excessive feed eye translations.</description><subject>A. Fibres</subject><subject>Applied sciences</subject><subject>Composites</subject><subject>E. Filament winding: C. Analytical modelling</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mechanical engineering. Machine design</subject><subject>Physics</subject><subject>Polymer industry, paints, wood</subject><subject>Solid mechanics</subject><subject>Static elasticity</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Steel design</subject><subject>Steel tanks and pressure vessels; boiler manufacturing</subject><subject>Structural and continuum mechanics</subject><subject>Technology of polymers</subject><issn>1359-835X</issn><issn>1878-5840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkEFrGzEQhZeSQB2n_2F7SG-7Ha2slTa3YOqmYEgPDfQmtNLIyN2VHEluyL-vjAPpMad5zHwzj3lV9ZlAS4D0X_etDvMhJJcxqbYDoKXfAqw-VAsiuGiYWMFF0ZQNjaDs98fqKqU9FJAOZFGtN25SM_pcPztvnN-19U8Vc93d1jv0GJ2u_ziPs8pFzcHgVCtvapdTncJ0zC74dF1dWjUl_PRal9Xj5tuv9X2zffj-Y323bTQVkBtGWT8YahnwnhLOVwPpRwGKMDZS4IIPVoFAO_CVNRapRgowIhplkaEZ6bL6cr57iOHpiCnL2SWN06Q8hmOSnSC8B9YVcDiDOoaUIlp5iG5W8UUSkKfY5F7-F5s8xXYaldjK7s2riUpaTTYqr116O8Ao78TACrc-c1g-_uswyqQdeo3GRdRZmuDe4fYP2GmJXA</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Koussios, S.</creator><creator>Bergsma, O.K.</creator><creator>Beukers, A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20040101</creationdate><title>Filament winding. Part 2: generic kinematic model and its solutions</title><author>Koussios, S. ; Bergsma, O.K. ; Beukers, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-53569d3f507631774916b80a155b307879fa08ef974fdfe3ce300beedafe5edb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>A. Fibres</topic><topic>Applied sciences</topic><topic>Composites</topic><topic>E. Filament winding: C. Analytical modelling</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mechanical engineering. Machine design</topic><topic>Physics</topic><topic>Polymer industry, paints, wood</topic><topic>Solid mechanics</topic><topic>Static elasticity</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Steel design</topic><topic>Steel tanks and pressure vessels; boiler manufacturing</topic><topic>Structural and continuum mechanics</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koussios, S.</creatorcontrib><creatorcontrib>Bergsma, O.K.</creatorcontrib><creatorcontrib>Beukers, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Composites. Part A, Applied science and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koussios, S.</au><au>Bergsma, O.K.</au><au>Beukers, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Filament winding. Part 2: generic kinematic model and its solutions</atitle><jtitle>Composites. Part A, Applied science and manufacturing</jtitle><date>2004-01-01</date><risdate>2004</risdate><volume>35</volume><issue>2</issue><spage>197</spage><epage>212</epage><pages>197-212</pages><issn>1359-835X</issn><eissn>1878-5840</eissn><abstract>This paper (Part II) provides the continuation of ‘Filament Winding Part I’. The main issue in Part II is the formulation and solution of the kinematic equations associated with filament winding. The basic geometry is a generic one; this implies that the method presented here should be suitable to deal with every possible winding machine configuration. However, in order to create a well-determined solution, various assumptions have been made, mainly regarding the coupling between the involved machine movements (translations and rotations). These couplings should preferably be derived by optimisation techniques. The solution method presented here can be characterised by robustness, improved accuracy and short calculation times. These properties make the method suitable for optimisation purposes. The obtained results clearly indicate that for a particular wound object geometry, the most suitable winding machine configuration is not always the lathe winder. In addition, the use of a lathe winder without cross-carriage is generally not feasible due to excessive feed eye translations.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesa.2003.10.004</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-835X
ispartof Composites. Part A, Applied science and manufacturing, 2004-01, Vol.35 (2), p.197-212
issn 1359-835X
1878-5840
language eng
recordid cdi_proquest_miscellaneous_28176052
source ScienceDirect Journals
subjects A. Fibres
Applied sciences
Composites
E. Filament winding: C. Analytical modelling
Exact sciences and technology
Forms of application and semi-finished materials
Fundamental areas of phenomenology (including applications)
Mechanical engineering. Machine design
Physics
Polymer industry, paints, wood
Solid mechanics
Static elasticity
Static elasticity (thermoelasticity...)
Steel design
Steel tanks and pressure vessels
boiler manufacturing
Structural and continuum mechanics
Technology of polymers
title Filament winding. Part 2: generic kinematic model and its solutions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T02%3A08%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Filament%20winding.%20Part%202:%20generic%20kinematic%20model%20and%20its%20solutions&rft.jtitle=Composites.%20Part%20A,%20Applied%20science%20and%20manufacturing&rft.au=Koussios,%20S.&rft.date=2004-01-01&rft.volume=35&rft.issue=2&rft.spage=197&rft.epage=212&rft.pages=197-212&rft.issn=1359-835X&rft.eissn=1878-5840&rft_id=info:doi/10.1016/j.compositesa.2003.10.004&rft_dat=%3Cproquest_cross%3E28176052%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-53569d3f507631774916b80a155b307879fa08ef974fdfe3ce300beedafe5edb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28176052&rft_id=info:pmid/&rfr_iscdi=true