Loading…
Structural insights into the transcription activation mechanism of the global regulator GlnR from actinobacteria
In actinobacteria, an OmpR/PhoB subfamily protein called GlnR acts as an orphan response regulator and globally coordinates the expression of genes responsible for nitrogen, carbon, and phosphate metabolism in actinobacteria. Although many researchers have attempted to elucidate the mechanisms of Gl...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2023-05, Vol.120 (22), p.e2300282120-e2300282120 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c366t-2255de724ac22aaf22f6ca6ec11514e6821a0ddeed0f77fe72e02cc65ff058aa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c366t-2255de724ac22aaf22f6ca6ec11514e6821a0ddeed0f77fe72e02cc65ff058aa3 |
container_end_page | e2300282120 |
container_issue | 22 |
container_start_page | e2300282120 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 120 |
creator | Shi, Jing Feng, Zhenzhen Xu, Juncao Li, Fangfang Zhang, Yuqiong Wen, Aijia Wang, Fulin Song, Qian Wang, Lu Cui, Hong Tong, Shujuan Chen, Peiying Zhu, Yejin Zhao, Guoping Wang, Shuang Feng, Yu Lin, Wei |
description | In actinobacteria, an OmpR/PhoB subfamily protein called GlnR acts as an orphan response regulator and globally coordinates the expression of genes responsible for nitrogen, carbon, and phosphate metabolism in actinobacteria. Although many researchers have attempted to elucidate the mechanisms of GlnR-dependent transcription activation, progress is impeded by lacking of an overall structure of GlnR-dependent transcription activation complex (GlnR-TAC). Here, we report a co-crystal structure of the C-terminal DNA-binding domain of GlnR (GlnR_DBD) in complex with its regulatory
-element DNA and a cryo-EM structure of GlnR-TAC which comprises
RNA polymerase, GlnR, and a promoter containing four well-characterized conserved GlnR binding sites. These structures illustrate how four GlnR protomers coordinate to engage promoter DNA in a head-to-tail manner, with four N-terminal receiver domains of GlnR (GlnR-RECs) bridging GlnR_DBDs and the RNAP core enzyme. Structural analysis also unravels that GlnR-TAC is stabilized by complex protein-protein interactions between GlnR and the conserved β flap, σ
R4, αCTD, and αNTD domains of RNAP, which are further confirmed by our biochemical assays. Taken together, these results reveal a global transcription activation mechanism for the master regulator GlnR and other OmpR/PhoB subfamily proteins and present a unique mode of bacterial transcription regulation. |
doi_str_mv | 10.1073/pnas.2300282120 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2818054563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822495948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-2255de724ac22aaf22f6ca6ec11514e6821a0ddeed0f77fe72e02cc65ff058aa3</originalsourceid><addsrcrecordid>eNpdkUtr5TAMhU2Zob19rLsrgdl0k1ZWYidZltIXFAbmsQ6qY9_rktip7RT678e9fcGsJKRPB0mHsWMOZxya6nx2FM-wAsAWOcIOW3HoeCnrDr6xVS43ZVtjvcf2Y3wEgE60sMv2qga5FBJWbP6dwqLSEmgsrIt2vUkxJ8kXaaOLFMhFFeycrHcFqWSfaZtOWm3I2TgV3mzJ9egfskTQ62Wk5ENxM7pfhQl-2o653FVJB0uH7LuhMeqj93jA_l5f_bm8Le9_3txdXtyXqpIylYhCDLrBmhQikUE0UpHUinPBay3zuQTDoPUApmlMJjWgUlIYA6Ilqg7Y6ZvuHPzTomPqJxuVHkdy2i-xx5a3IGohq4z--A999EtwebtMIdad6Oo2U-dvlAo-xqBNPwc7UXjpOfSvZvSvZvRfZuSJk3fd5WHSwyf_8f3qHwnvh-o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822495948</pqid></control><display><type>article</type><title>Structural insights into the transcription activation mechanism of the global regulator GlnR from actinobacteria</title><source>PubMed Central (Open access)</source><creator>Shi, Jing ; Feng, Zhenzhen ; Xu, Juncao ; Li, Fangfang ; Zhang, Yuqiong ; Wen, Aijia ; Wang, Fulin ; Song, Qian ; Wang, Lu ; Cui, Hong ; Tong, Shujuan ; Chen, Peiying ; Zhu, Yejin ; Zhao, Guoping ; Wang, Shuang ; Feng, Yu ; Lin, Wei</creator><creatorcontrib>Shi, Jing ; Feng, Zhenzhen ; Xu, Juncao ; Li, Fangfang ; Zhang, Yuqiong ; Wen, Aijia ; Wang, Fulin ; Song, Qian ; Wang, Lu ; Cui, Hong ; Tong, Shujuan ; Chen, Peiying ; Zhu, Yejin ; Zhao, Guoping ; Wang, Shuang ; Feng, Yu ; Lin, Wei</creatorcontrib><description>In actinobacteria, an OmpR/PhoB subfamily protein called GlnR acts as an orphan response regulator and globally coordinates the expression of genes responsible for nitrogen, carbon, and phosphate metabolism in actinobacteria. Although many researchers have attempted to elucidate the mechanisms of GlnR-dependent transcription activation, progress is impeded by lacking of an overall structure of GlnR-dependent transcription activation complex (GlnR-TAC). Here, we report a co-crystal structure of the C-terminal DNA-binding domain of GlnR (GlnR_DBD) in complex with its regulatory
-element DNA and a cryo-EM structure of GlnR-TAC which comprises
RNA polymerase, GlnR, and a promoter containing four well-characterized conserved GlnR binding sites. These structures illustrate how four GlnR protomers coordinate to engage promoter DNA in a head-to-tail manner, with four N-terminal receiver domains of GlnR (GlnR-RECs) bridging GlnR_DBDs and the RNAP core enzyme. Structural analysis also unravels that GlnR-TAC is stabilized by complex protein-protein interactions between GlnR and the conserved β flap, σ
R4, αCTD, and αNTD domains of RNAP, which are further confirmed by our biochemical assays. Taken together, these results reveal a global transcription activation mechanism for the master regulator GlnR and other OmpR/PhoB subfamily proteins and present a unique mode of bacterial transcription regulation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2300282120</identifier><identifier>PMID: 37216560</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Actinobacteria - genetics ; Actinobacteria - metabolism ; Aldehydes ; Bacterial Proteins - metabolism ; Binding sites ; Crystal structure ; Deoxyribonucleic acid ; DNA ; DNA structure ; DNA-directed RNA polymerase ; Domains ; Gene expression ; Gene Expression Regulation, Bacterial ; Gene regulation ; Metabolism ; Phosphates ; Promoter Regions, Genetic - genetics ; Protein interaction ; Proteins ; RNA polymerase ; Structural analysis ; Trans-Activators - metabolism ; Transcription activation ; Transcriptional Activation - genetics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-05, Vol.120 (22), p.e2300282120-e2300282120</ispartof><rights>Copyright National Academy of Sciences May 30, 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-2255de724ac22aaf22f6ca6ec11514e6821a0ddeed0f77fe72e02cc65ff058aa3</citedby><cites>FETCH-LOGICAL-c366t-2255de724ac22aaf22f6ca6ec11514e6821a0ddeed0f77fe72e02cc65ff058aa3</cites><orcidid>0000-0003-4239-8320 ; 0000-0003-3879-9519 ; 0000-0002-2940-6966 ; 0000-0001-8988-0013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37216560$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Jing</creatorcontrib><creatorcontrib>Feng, Zhenzhen</creatorcontrib><creatorcontrib>Xu, Juncao</creatorcontrib><creatorcontrib>Li, Fangfang</creatorcontrib><creatorcontrib>Zhang, Yuqiong</creatorcontrib><creatorcontrib>Wen, Aijia</creatorcontrib><creatorcontrib>Wang, Fulin</creatorcontrib><creatorcontrib>Song, Qian</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Cui, Hong</creatorcontrib><creatorcontrib>Tong, Shujuan</creatorcontrib><creatorcontrib>Chen, Peiying</creatorcontrib><creatorcontrib>Zhu, Yejin</creatorcontrib><creatorcontrib>Zhao, Guoping</creatorcontrib><creatorcontrib>Wang, Shuang</creatorcontrib><creatorcontrib>Feng, Yu</creatorcontrib><creatorcontrib>Lin, Wei</creatorcontrib><title>Structural insights into the transcription activation mechanism of the global regulator GlnR from actinobacteria</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>In actinobacteria, an OmpR/PhoB subfamily protein called GlnR acts as an orphan response regulator and globally coordinates the expression of genes responsible for nitrogen, carbon, and phosphate metabolism in actinobacteria. Although many researchers have attempted to elucidate the mechanisms of GlnR-dependent transcription activation, progress is impeded by lacking of an overall structure of GlnR-dependent transcription activation complex (GlnR-TAC). Here, we report a co-crystal structure of the C-terminal DNA-binding domain of GlnR (GlnR_DBD) in complex with its regulatory
-element DNA and a cryo-EM structure of GlnR-TAC which comprises
RNA polymerase, GlnR, and a promoter containing four well-characterized conserved GlnR binding sites. These structures illustrate how four GlnR protomers coordinate to engage promoter DNA in a head-to-tail manner, with four N-terminal receiver domains of GlnR (GlnR-RECs) bridging GlnR_DBDs and the RNAP core enzyme. Structural analysis also unravels that GlnR-TAC is stabilized by complex protein-protein interactions between GlnR and the conserved β flap, σ
R4, αCTD, and αNTD domains of RNAP, which are further confirmed by our biochemical assays. Taken together, these results reveal a global transcription activation mechanism for the master regulator GlnR and other OmpR/PhoB subfamily proteins and present a unique mode of bacterial transcription regulation.</description><subject>Actinobacteria - genetics</subject><subject>Actinobacteria - metabolism</subject><subject>Aldehydes</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding sites</subject><subject>Crystal structure</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA structure</subject><subject>DNA-directed RNA polymerase</subject><subject>Domains</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene regulation</subject><subject>Metabolism</subject><subject>Phosphates</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>RNA polymerase</subject><subject>Structural analysis</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription activation</subject><subject>Transcriptional Activation - genetics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkUtr5TAMhU2Zob19rLsrgdl0k1ZWYidZltIXFAbmsQ6qY9_rktip7RT678e9fcGsJKRPB0mHsWMOZxya6nx2FM-wAsAWOcIOW3HoeCnrDr6xVS43ZVtjvcf2Y3wEgE60sMv2qga5FBJWbP6dwqLSEmgsrIt2vUkxJ8kXaaOLFMhFFeycrHcFqWSfaZtOWm3I2TgV3mzJ9egfskTQ62Wk5ENxM7pfhQl-2o653FVJB0uH7LuhMeqj93jA_l5f_bm8Le9_3txdXtyXqpIylYhCDLrBmhQikUE0UpHUinPBay3zuQTDoPUApmlMJjWgUlIYA6Ilqg7Y6ZvuHPzTomPqJxuVHkdy2i-xx5a3IGohq4z--A999EtwebtMIdad6Oo2U-dvlAo-xqBNPwc7UXjpOfSvZvSvZvRfZuSJk3fd5WHSwyf_8f3qHwnvh-o</recordid><startdate>20230530</startdate><enddate>20230530</enddate><creator>Shi, Jing</creator><creator>Feng, Zhenzhen</creator><creator>Xu, Juncao</creator><creator>Li, Fangfang</creator><creator>Zhang, Yuqiong</creator><creator>Wen, Aijia</creator><creator>Wang, Fulin</creator><creator>Song, Qian</creator><creator>Wang, Lu</creator><creator>Cui, Hong</creator><creator>Tong, Shujuan</creator><creator>Chen, Peiying</creator><creator>Zhu, Yejin</creator><creator>Zhao, Guoping</creator><creator>Wang, Shuang</creator><creator>Feng, Yu</creator><creator>Lin, Wei</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4239-8320</orcidid><orcidid>https://orcid.org/0000-0003-3879-9519</orcidid><orcidid>https://orcid.org/0000-0002-2940-6966</orcidid><orcidid>https://orcid.org/0000-0001-8988-0013</orcidid></search><sort><creationdate>20230530</creationdate><title>Structural insights into the transcription activation mechanism of the global regulator GlnR from actinobacteria</title><author>Shi, Jing ; Feng, Zhenzhen ; Xu, Juncao ; Li, Fangfang ; Zhang, Yuqiong ; Wen, Aijia ; Wang, Fulin ; Song, Qian ; Wang, Lu ; Cui, Hong ; Tong, Shujuan ; Chen, Peiying ; Zhu, Yejin ; Zhao, Guoping ; Wang, Shuang ; Feng, Yu ; Lin, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-2255de724ac22aaf22f6ca6ec11514e6821a0ddeed0f77fe72e02cc65ff058aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actinobacteria - genetics</topic><topic>Actinobacteria - metabolism</topic><topic>Aldehydes</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding sites</topic><topic>Crystal structure</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA structure</topic><topic>DNA-directed RNA polymerase</topic><topic>Domains</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene regulation</topic><topic>Metabolism</topic><topic>Phosphates</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>RNA polymerase</topic><topic>Structural analysis</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription activation</topic><topic>Transcriptional Activation - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Jing</creatorcontrib><creatorcontrib>Feng, Zhenzhen</creatorcontrib><creatorcontrib>Xu, Juncao</creatorcontrib><creatorcontrib>Li, Fangfang</creatorcontrib><creatorcontrib>Zhang, Yuqiong</creatorcontrib><creatorcontrib>Wen, Aijia</creatorcontrib><creatorcontrib>Wang, Fulin</creatorcontrib><creatorcontrib>Song, Qian</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Cui, Hong</creatorcontrib><creatorcontrib>Tong, Shujuan</creatorcontrib><creatorcontrib>Chen, Peiying</creatorcontrib><creatorcontrib>Zhu, Yejin</creatorcontrib><creatorcontrib>Zhao, Guoping</creatorcontrib><creatorcontrib>Wang, Shuang</creatorcontrib><creatorcontrib>Feng, Yu</creatorcontrib><creatorcontrib>Lin, Wei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Jing</au><au>Feng, Zhenzhen</au><au>Xu, Juncao</au><au>Li, Fangfang</au><au>Zhang, Yuqiong</au><au>Wen, Aijia</au><au>Wang, Fulin</au><au>Song, Qian</au><au>Wang, Lu</au><au>Cui, Hong</au><au>Tong, Shujuan</au><au>Chen, Peiying</au><au>Zhu, Yejin</au><au>Zhao, Guoping</au><au>Wang, Shuang</au><au>Feng, Yu</au><au>Lin, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural insights into the transcription activation mechanism of the global regulator GlnR from actinobacteria</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-05-30</date><risdate>2023</risdate><volume>120</volume><issue>22</issue><spage>e2300282120</spage><epage>e2300282120</epage><pages>e2300282120-e2300282120</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>In actinobacteria, an OmpR/PhoB subfamily protein called GlnR acts as an orphan response regulator and globally coordinates the expression of genes responsible for nitrogen, carbon, and phosphate metabolism in actinobacteria. Although many researchers have attempted to elucidate the mechanisms of GlnR-dependent transcription activation, progress is impeded by lacking of an overall structure of GlnR-dependent transcription activation complex (GlnR-TAC). Here, we report a co-crystal structure of the C-terminal DNA-binding domain of GlnR (GlnR_DBD) in complex with its regulatory
-element DNA and a cryo-EM structure of GlnR-TAC which comprises
RNA polymerase, GlnR, and a promoter containing four well-characterized conserved GlnR binding sites. These structures illustrate how four GlnR protomers coordinate to engage promoter DNA in a head-to-tail manner, with four N-terminal receiver domains of GlnR (GlnR-RECs) bridging GlnR_DBDs and the RNAP core enzyme. Structural analysis also unravels that GlnR-TAC is stabilized by complex protein-protein interactions between GlnR and the conserved β flap, σ
R4, αCTD, and αNTD domains of RNAP, which are further confirmed by our biochemical assays. Taken together, these results reveal a global transcription activation mechanism for the master regulator GlnR and other OmpR/PhoB subfamily proteins and present a unique mode of bacterial transcription regulation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>37216560</pmid><doi>10.1073/pnas.2300282120</doi><orcidid>https://orcid.org/0000-0003-4239-8320</orcidid><orcidid>https://orcid.org/0000-0003-3879-9519</orcidid><orcidid>https://orcid.org/0000-0002-2940-6966</orcidid><orcidid>https://orcid.org/0000-0001-8988-0013</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2023-05, Vol.120 (22), p.e2300282120-e2300282120 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_2818054563 |
source | PubMed Central (Open access) |
subjects | Actinobacteria - genetics Actinobacteria - metabolism Aldehydes Bacterial Proteins - metabolism Binding sites Crystal structure Deoxyribonucleic acid DNA DNA structure DNA-directed RNA polymerase Domains Gene expression Gene Expression Regulation, Bacterial Gene regulation Metabolism Phosphates Promoter Regions, Genetic - genetics Protein interaction Proteins RNA polymerase Structural analysis Trans-Activators - metabolism Transcription activation Transcriptional Activation - genetics |
title | Structural insights into the transcription activation mechanism of the global regulator GlnR from actinobacteria |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A32%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20insights%20into%20the%20transcription%20activation%20mechanism%20of%20the%20global%20regulator%20GlnR%20from%20actinobacteria&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Shi,%20Jing&rft.date=2023-05-30&rft.volume=120&rft.issue=22&rft.spage=e2300282120&rft.epage=e2300282120&rft.pages=e2300282120-e2300282120&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2300282120&rft_dat=%3Cproquest_cross%3E2822495948%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-2255de724ac22aaf22f6ca6ec11514e6821a0ddeed0f77fe72e02cc65ff058aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2822495948&rft_id=info:pmid/37216560&rfr_iscdi=true |