Loading…

Structural insights into the transcription activation mechanism of the global regulator GlnR from actinobacteria

In actinobacteria, an OmpR/PhoB subfamily protein called GlnR acts as an orphan response regulator and globally coordinates the expression of genes responsible for nitrogen, carbon, and phosphate metabolism in actinobacteria. Although many researchers have attempted to elucidate the mechanisms of Gl...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2023-05, Vol.120 (22), p.e2300282120-e2300282120
Main Authors: Shi, Jing, Feng, Zhenzhen, Xu, Juncao, Li, Fangfang, Zhang, Yuqiong, Wen, Aijia, Wang, Fulin, Song, Qian, Wang, Lu, Cui, Hong, Tong, Shujuan, Chen, Peiying, Zhu, Yejin, Zhao, Guoping, Wang, Shuang, Feng, Yu, Lin, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c366t-2255de724ac22aaf22f6ca6ec11514e6821a0ddeed0f77fe72e02cc65ff058aa3
cites cdi_FETCH-LOGICAL-c366t-2255de724ac22aaf22f6ca6ec11514e6821a0ddeed0f77fe72e02cc65ff058aa3
container_end_page e2300282120
container_issue 22
container_start_page e2300282120
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 120
creator Shi, Jing
Feng, Zhenzhen
Xu, Juncao
Li, Fangfang
Zhang, Yuqiong
Wen, Aijia
Wang, Fulin
Song, Qian
Wang, Lu
Cui, Hong
Tong, Shujuan
Chen, Peiying
Zhu, Yejin
Zhao, Guoping
Wang, Shuang
Feng, Yu
Lin, Wei
description In actinobacteria, an OmpR/PhoB subfamily protein called GlnR acts as an orphan response regulator and globally coordinates the expression of genes responsible for nitrogen, carbon, and phosphate metabolism in actinobacteria. Although many researchers have attempted to elucidate the mechanisms of GlnR-dependent transcription activation, progress is impeded by lacking of an overall structure of GlnR-dependent transcription activation complex (GlnR-TAC). Here, we report a co-crystal structure of the C-terminal DNA-binding domain of GlnR (GlnR_DBD) in complex with its regulatory -element DNA and a cryo-EM structure of GlnR-TAC which comprises RNA polymerase, GlnR, and a promoter containing four well-characterized conserved GlnR binding sites. These structures illustrate how four GlnR protomers coordinate to engage promoter DNA in a head-to-tail manner, with four N-terminal receiver domains of GlnR (GlnR-RECs) bridging GlnR_DBDs and the RNAP core enzyme. Structural analysis also unravels that GlnR-TAC is stabilized by complex protein-protein interactions between GlnR and the conserved β flap, σ R4, αCTD, and αNTD domains of RNAP, which are further confirmed by our biochemical assays. Taken together, these results reveal a global transcription activation mechanism for the master regulator GlnR and other OmpR/PhoB subfamily proteins and present a unique mode of bacterial transcription regulation.
doi_str_mv 10.1073/pnas.2300282120
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2818054563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822495948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-2255de724ac22aaf22f6ca6ec11514e6821a0ddeed0f77fe72e02cc65ff058aa3</originalsourceid><addsrcrecordid>eNpdkUtr5TAMhU2Zob19rLsrgdl0k1ZWYidZltIXFAbmsQ6qY9_rktip7RT678e9fcGsJKRPB0mHsWMOZxya6nx2FM-wAsAWOcIOW3HoeCnrDr6xVS43ZVtjvcf2Y3wEgE60sMv2qga5FBJWbP6dwqLSEmgsrIt2vUkxJ8kXaaOLFMhFFeycrHcFqWSfaZtOWm3I2TgV3mzJ9egfskTQ62Wk5ENxM7pfhQl-2o653FVJB0uH7LuhMeqj93jA_l5f_bm8Le9_3txdXtyXqpIylYhCDLrBmhQikUE0UpHUinPBay3zuQTDoPUApmlMJjWgUlIYA6Ilqg7Y6ZvuHPzTomPqJxuVHkdy2i-xx5a3IGohq4z--A999EtwebtMIdad6Oo2U-dvlAo-xqBNPwc7UXjpOfSvZvSvZvRfZuSJk3fd5WHSwyf_8f3qHwnvh-o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822495948</pqid></control><display><type>article</type><title>Structural insights into the transcription activation mechanism of the global regulator GlnR from actinobacteria</title><source>PubMed Central (Open access)</source><creator>Shi, Jing ; Feng, Zhenzhen ; Xu, Juncao ; Li, Fangfang ; Zhang, Yuqiong ; Wen, Aijia ; Wang, Fulin ; Song, Qian ; Wang, Lu ; Cui, Hong ; Tong, Shujuan ; Chen, Peiying ; Zhu, Yejin ; Zhao, Guoping ; Wang, Shuang ; Feng, Yu ; Lin, Wei</creator><creatorcontrib>Shi, Jing ; Feng, Zhenzhen ; Xu, Juncao ; Li, Fangfang ; Zhang, Yuqiong ; Wen, Aijia ; Wang, Fulin ; Song, Qian ; Wang, Lu ; Cui, Hong ; Tong, Shujuan ; Chen, Peiying ; Zhu, Yejin ; Zhao, Guoping ; Wang, Shuang ; Feng, Yu ; Lin, Wei</creatorcontrib><description>In actinobacteria, an OmpR/PhoB subfamily protein called GlnR acts as an orphan response regulator and globally coordinates the expression of genes responsible for nitrogen, carbon, and phosphate metabolism in actinobacteria. Although many researchers have attempted to elucidate the mechanisms of GlnR-dependent transcription activation, progress is impeded by lacking of an overall structure of GlnR-dependent transcription activation complex (GlnR-TAC). Here, we report a co-crystal structure of the C-terminal DNA-binding domain of GlnR (GlnR_DBD) in complex with its regulatory -element DNA and a cryo-EM structure of GlnR-TAC which comprises RNA polymerase, GlnR, and a promoter containing four well-characterized conserved GlnR binding sites. These structures illustrate how four GlnR protomers coordinate to engage promoter DNA in a head-to-tail manner, with four N-terminal receiver domains of GlnR (GlnR-RECs) bridging GlnR_DBDs and the RNAP core enzyme. Structural analysis also unravels that GlnR-TAC is stabilized by complex protein-protein interactions between GlnR and the conserved β flap, σ R4, αCTD, and αNTD domains of RNAP, which are further confirmed by our biochemical assays. Taken together, these results reveal a global transcription activation mechanism for the master regulator GlnR and other OmpR/PhoB subfamily proteins and present a unique mode of bacterial transcription regulation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2300282120</identifier><identifier>PMID: 37216560</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Actinobacteria - genetics ; Actinobacteria - metabolism ; Aldehydes ; Bacterial Proteins - metabolism ; Binding sites ; Crystal structure ; Deoxyribonucleic acid ; DNA ; DNA structure ; DNA-directed RNA polymerase ; Domains ; Gene expression ; Gene Expression Regulation, Bacterial ; Gene regulation ; Metabolism ; Phosphates ; Promoter Regions, Genetic - genetics ; Protein interaction ; Proteins ; RNA polymerase ; Structural analysis ; Trans-Activators - metabolism ; Transcription activation ; Transcriptional Activation - genetics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-05, Vol.120 (22), p.e2300282120-e2300282120</ispartof><rights>Copyright National Academy of Sciences May 30, 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-2255de724ac22aaf22f6ca6ec11514e6821a0ddeed0f77fe72e02cc65ff058aa3</citedby><cites>FETCH-LOGICAL-c366t-2255de724ac22aaf22f6ca6ec11514e6821a0ddeed0f77fe72e02cc65ff058aa3</cites><orcidid>0000-0003-4239-8320 ; 0000-0003-3879-9519 ; 0000-0002-2940-6966 ; 0000-0001-8988-0013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37216560$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Jing</creatorcontrib><creatorcontrib>Feng, Zhenzhen</creatorcontrib><creatorcontrib>Xu, Juncao</creatorcontrib><creatorcontrib>Li, Fangfang</creatorcontrib><creatorcontrib>Zhang, Yuqiong</creatorcontrib><creatorcontrib>Wen, Aijia</creatorcontrib><creatorcontrib>Wang, Fulin</creatorcontrib><creatorcontrib>Song, Qian</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Cui, Hong</creatorcontrib><creatorcontrib>Tong, Shujuan</creatorcontrib><creatorcontrib>Chen, Peiying</creatorcontrib><creatorcontrib>Zhu, Yejin</creatorcontrib><creatorcontrib>Zhao, Guoping</creatorcontrib><creatorcontrib>Wang, Shuang</creatorcontrib><creatorcontrib>Feng, Yu</creatorcontrib><creatorcontrib>Lin, Wei</creatorcontrib><title>Structural insights into the transcription activation mechanism of the global regulator GlnR from actinobacteria</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>In actinobacteria, an OmpR/PhoB subfamily protein called GlnR acts as an orphan response regulator and globally coordinates the expression of genes responsible for nitrogen, carbon, and phosphate metabolism in actinobacteria. Although many researchers have attempted to elucidate the mechanisms of GlnR-dependent transcription activation, progress is impeded by lacking of an overall structure of GlnR-dependent transcription activation complex (GlnR-TAC). Here, we report a co-crystal structure of the C-terminal DNA-binding domain of GlnR (GlnR_DBD) in complex with its regulatory -element DNA and a cryo-EM structure of GlnR-TAC which comprises RNA polymerase, GlnR, and a promoter containing four well-characterized conserved GlnR binding sites. These structures illustrate how four GlnR protomers coordinate to engage promoter DNA in a head-to-tail manner, with four N-terminal receiver domains of GlnR (GlnR-RECs) bridging GlnR_DBDs and the RNAP core enzyme. Structural analysis also unravels that GlnR-TAC is stabilized by complex protein-protein interactions between GlnR and the conserved β flap, σ R4, αCTD, and αNTD domains of RNAP, which are further confirmed by our biochemical assays. Taken together, these results reveal a global transcription activation mechanism for the master regulator GlnR and other OmpR/PhoB subfamily proteins and present a unique mode of bacterial transcription regulation.</description><subject>Actinobacteria - genetics</subject><subject>Actinobacteria - metabolism</subject><subject>Aldehydes</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding sites</subject><subject>Crystal structure</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA structure</subject><subject>DNA-directed RNA polymerase</subject><subject>Domains</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene regulation</subject><subject>Metabolism</subject><subject>Phosphates</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>RNA polymerase</subject><subject>Structural analysis</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription activation</subject><subject>Transcriptional Activation - genetics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkUtr5TAMhU2Zob19rLsrgdl0k1ZWYidZltIXFAbmsQ6qY9_rktip7RT678e9fcGsJKRPB0mHsWMOZxya6nx2FM-wAsAWOcIOW3HoeCnrDr6xVS43ZVtjvcf2Y3wEgE60sMv2qga5FBJWbP6dwqLSEmgsrIt2vUkxJ8kXaaOLFMhFFeycrHcFqWSfaZtOWm3I2TgV3mzJ9egfskTQ62Wk5ENxM7pfhQl-2o653FVJB0uH7LuhMeqj93jA_l5f_bm8Le9_3txdXtyXqpIylYhCDLrBmhQikUE0UpHUinPBay3zuQTDoPUApmlMJjWgUlIYA6Ilqg7Y6ZvuHPzTomPqJxuVHkdy2i-xx5a3IGohq4z--A999EtwebtMIdad6Oo2U-dvlAo-xqBNPwc7UXjpOfSvZvSvZvRfZuSJk3fd5WHSwyf_8f3qHwnvh-o</recordid><startdate>20230530</startdate><enddate>20230530</enddate><creator>Shi, Jing</creator><creator>Feng, Zhenzhen</creator><creator>Xu, Juncao</creator><creator>Li, Fangfang</creator><creator>Zhang, Yuqiong</creator><creator>Wen, Aijia</creator><creator>Wang, Fulin</creator><creator>Song, Qian</creator><creator>Wang, Lu</creator><creator>Cui, Hong</creator><creator>Tong, Shujuan</creator><creator>Chen, Peiying</creator><creator>Zhu, Yejin</creator><creator>Zhao, Guoping</creator><creator>Wang, Shuang</creator><creator>Feng, Yu</creator><creator>Lin, Wei</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4239-8320</orcidid><orcidid>https://orcid.org/0000-0003-3879-9519</orcidid><orcidid>https://orcid.org/0000-0002-2940-6966</orcidid><orcidid>https://orcid.org/0000-0001-8988-0013</orcidid></search><sort><creationdate>20230530</creationdate><title>Structural insights into the transcription activation mechanism of the global regulator GlnR from actinobacteria</title><author>Shi, Jing ; Feng, Zhenzhen ; Xu, Juncao ; Li, Fangfang ; Zhang, Yuqiong ; Wen, Aijia ; Wang, Fulin ; Song, Qian ; Wang, Lu ; Cui, Hong ; Tong, Shujuan ; Chen, Peiying ; Zhu, Yejin ; Zhao, Guoping ; Wang, Shuang ; Feng, Yu ; Lin, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-2255de724ac22aaf22f6ca6ec11514e6821a0ddeed0f77fe72e02cc65ff058aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actinobacteria - genetics</topic><topic>Actinobacteria - metabolism</topic><topic>Aldehydes</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding sites</topic><topic>Crystal structure</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA structure</topic><topic>DNA-directed RNA polymerase</topic><topic>Domains</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene regulation</topic><topic>Metabolism</topic><topic>Phosphates</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>RNA polymerase</topic><topic>Structural analysis</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription activation</topic><topic>Transcriptional Activation - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Jing</creatorcontrib><creatorcontrib>Feng, Zhenzhen</creatorcontrib><creatorcontrib>Xu, Juncao</creatorcontrib><creatorcontrib>Li, Fangfang</creatorcontrib><creatorcontrib>Zhang, Yuqiong</creatorcontrib><creatorcontrib>Wen, Aijia</creatorcontrib><creatorcontrib>Wang, Fulin</creatorcontrib><creatorcontrib>Song, Qian</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Cui, Hong</creatorcontrib><creatorcontrib>Tong, Shujuan</creatorcontrib><creatorcontrib>Chen, Peiying</creatorcontrib><creatorcontrib>Zhu, Yejin</creatorcontrib><creatorcontrib>Zhao, Guoping</creatorcontrib><creatorcontrib>Wang, Shuang</creatorcontrib><creatorcontrib>Feng, Yu</creatorcontrib><creatorcontrib>Lin, Wei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Jing</au><au>Feng, Zhenzhen</au><au>Xu, Juncao</au><au>Li, Fangfang</au><au>Zhang, Yuqiong</au><au>Wen, Aijia</au><au>Wang, Fulin</au><au>Song, Qian</au><au>Wang, Lu</au><au>Cui, Hong</au><au>Tong, Shujuan</au><au>Chen, Peiying</au><au>Zhu, Yejin</au><au>Zhao, Guoping</au><au>Wang, Shuang</au><au>Feng, Yu</au><au>Lin, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural insights into the transcription activation mechanism of the global regulator GlnR from actinobacteria</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-05-30</date><risdate>2023</risdate><volume>120</volume><issue>22</issue><spage>e2300282120</spage><epage>e2300282120</epage><pages>e2300282120-e2300282120</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>In actinobacteria, an OmpR/PhoB subfamily protein called GlnR acts as an orphan response regulator and globally coordinates the expression of genes responsible for nitrogen, carbon, and phosphate metabolism in actinobacteria. Although many researchers have attempted to elucidate the mechanisms of GlnR-dependent transcription activation, progress is impeded by lacking of an overall structure of GlnR-dependent transcription activation complex (GlnR-TAC). Here, we report a co-crystal structure of the C-terminal DNA-binding domain of GlnR (GlnR_DBD) in complex with its regulatory -element DNA and a cryo-EM structure of GlnR-TAC which comprises RNA polymerase, GlnR, and a promoter containing four well-characterized conserved GlnR binding sites. These structures illustrate how four GlnR protomers coordinate to engage promoter DNA in a head-to-tail manner, with four N-terminal receiver domains of GlnR (GlnR-RECs) bridging GlnR_DBDs and the RNAP core enzyme. Structural analysis also unravels that GlnR-TAC is stabilized by complex protein-protein interactions between GlnR and the conserved β flap, σ R4, αCTD, and αNTD domains of RNAP, which are further confirmed by our biochemical assays. Taken together, these results reveal a global transcription activation mechanism for the master regulator GlnR and other OmpR/PhoB subfamily proteins and present a unique mode of bacterial transcription regulation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>37216560</pmid><doi>10.1073/pnas.2300282120</doi><orcidid>https://orcid.org/0000-0003-4239-8320</orcidid><orcidid>https://orcid.org/0000-0003-3879-9519</orcidid><orcidid>https://orcid.org/0000-0002-2940-6966</orcidid><orcidid>https://orcid.org/0000-0001-8988-0013</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2023-05, Vol.120 (22), p.e2300282120-e2300282120
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_2818054563
source PubMed Central (Open access)
subjects Actinobacteria - genetics
Actinobacteria - metabolism
Aldehydes
Bacterial Proteins - metabolism
Binding sites
Crystal structure
Deoxyribonucleic acid
DNA
DNA structure
DNA-directed RNA polymerase
Domains
Gene expression
Gene Expression Regulation, Bacterial
Gene regulation
Metabolism
Phosphates
Promoter Regions, Genetic - genetics
Protein interaction
Proteins
RNA polymerase
Structural analysis
Trans-Activators - metabolism
Transcription activation
Transcriptional Activation - genetics
title Structural insights into the transcription activation mechanism of the global regulator GlnR from actinobacteria
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A32%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20insights%20into%20the%20transcription%20activation%20mechanism%20of%20the%20global%20regulator%20GlnR%20from%20actinobacteria&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Shi,%20Jing&rft.date=2023-05-30&rft.volume=120&rft.issue=22&rft.spage=e2300282120&rft.epage=e2300282120&rft.pages=e2300282120-e2300282120&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2300282120&rft_dat=%3Cproquest_cross%3E2822495948%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-2255de724ac22aaf22f6ca6ec11514e6821a0ddeed0f77fe72e02cc65ff058aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2822495948&rft_id=info:pmid/37216560&rfr_iscdi=true