Loading…
Bimetallic Metal–Organic Frameworks as an Efficient Capture Probe in Signal On–Off–On Electrochemiluminescence Aptasensor for Microcystin-LR Detection
To ensure drinking water quality, the development of rapid and accurate analytical methods is essential. Herein, a highly sensitive electrochemiluminescence (ECL) aptasensor-based on the signal on–off–on strategy was developed to detect the water pollutant microcystin-LR (MC-LR). This strategy was b...
Saved in:
Published in: | Analytical chemistry (Washington) 2023-06, Vol.95 (22), p.8487-8495 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a3271-5a5c9a5837bb2c3149391dd0332bd38c5ba5d05076451c365150a4437ee604cd3 |
---|---|
cites | cdi_FETCH-LOGICAL-a3271-5a5c9a5837bb2c3149391dd0332bd38c5ba5d05076451c365150a4437ee604cd3 |
container_end_page | 8495 |
container_issue | 22 |
container_start_page | 8487 |
container_title | Analytical chemistry (Washington) |
container_volume | 95 |
creator | Zhao, Guanhui Du, Yu Zhang, Nuo Li, Yuan Bai, Guozhen Ma, Hongmin Wu, Dan Cao, Wei Wei, Qin |
description | To ensure drinking water quality, the development of rapid and accurate analytical methods is essential. Herein, a highly sensitive electrochemiluminescence (ECL) aptasensor-based on the signal on–off–on strategy was developed to detect the water pollutant microcystin-LR (MC-LR). This strategy was based on a newly prepared ruthenium-copper metal–organic framework (RuCu MOF) as the ECL signal-transmitting probe and three types of PdPt alloy core–shell nanocrystals with different crystal structures as signal-off probes. Compounding the copper-based MOF (Cu-MOF) precursor with ruthenium bipyridyl at room temperature facilitated the retention of the intrinsic crystallinity and high porosity of the MOFs as well as afforded excellent ECL performance. Since bipyridine ruthenium in RuCu MOFs could transfer energies to the organic ligand (H3BTC), the ultra-efficient ligand luminescent ECL signal probe was finally obtained, which greatly improved the sensitivity of the aptasensor. To further improve the sensitivity of the aptasensor, the quenching effects of noble metal nanoalloy particles with different crystal states were investigated, which contained PdPt octahedral (PdPtOct), PdPt rhombic dodecahedral (PdPtRD), and PdPt nanocube (PdPtNC). Among them, the PdPtRD nanocrystal exhibited higher activity and excellent durability, stemming from the charge redistribution caused by the hybridization of Pt and Pd atoms. Moreover, PdPtRD could also load more −NH2–DNA strands because it exposed more active sites with a large specific surface area. The fabricated aptasensor exhibited outstanding sensitivity and stability in MC-LR detection, with a linear detection range of 0.0001–50 ng mL–1. This study provides valuable directions for the application of alloy nanoparticles of noble metals and bimetallic MOFs in the field of ECL immunoassay. |
doi_str_mv | 10.1021/acs.analchem.3c00301 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2818054704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818054704</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3271-5a5c9a5837bb2c3149391dd0332bd38c5ba5d05076451c365150a4437ee604cd3</originalsourceid><addsrcrecordid>eNp9kctu1DAUhi1ERYfCGyBkiQ2bTM_xJcksy9AC0lSDuKwjxzkpLokztROh7ngHtjwdT4KjmXbRRSXf9f3H_9HP2CuEJYLAU2Pj0njT2R_UL6UFkIBP2AK1gCwvS_GULSA9ZqIAOGbPY7wGQATMn7FjWQjMlSgW7O8719Nous5Zfjkf_v3-sw1Xxqf7RTA9_RrCz8hNGp6ft62zjvzI12Y3ToH45zDUxJ3nX91V8sK3fta37bwmviM7hmF26Lqpd56iJW-Jn-1GE8nHIfA2zUtnE3UbR-ezzRf-nsakc4N_wY5a00V6edhP2PeL82_rj9lm--HT-myTGSkKzLTRdmV0KYu6FlaiWskVNg1IKepGllbXRjegociVRitzjRqMUrIgykHZRp6wt_u6uzDcTBTHqnfJadcZT8MUK1FiCVoVoBL65gF6PUwhtT5TQuYrJRETpfZU6ivGQG21C6434bZCqOb0qpRedZdedUgvyV4fik91T8296C6uBMAemOX3Hz9a8z9ut6zD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823694311</pqid></control><display><type>article</type><title>Bimetallic Metal–Organic Frameworks as an Efficient Capture Probe in Signal On–Off–On Electrochemiluminescence Aptasensor for Microcystin-LR Detection</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Zhao, Guanhui ; Du, Yu ; Zhang, Nuo ; Li, Yuan ; Bai, Guozhen ; Ma, Hongmin ; Wu, Dan ; Cao, Wei ; Wei, Qin</creator><creatorcontrib>Zhao, Guanhui ; Du, Yu ; Zhang, Nuo ; Li, Yuan ; Bai, Guozhen ; Ma, Hongmin ; Wu, Dan ; Cao, Wei ; Wei, Qin</creatorcontrib><description>To ensure drinking water quality, the development of rapid and accurate analytical methods is essential. Herein, a highly sensitive electrochemiluminescence (ECL) aptasensor-based on the signal on–off–on strategy was developed to detect the water pollutant microcystin-LR (MC-LR). This strategy was based on a newly prepared ruthenium-copper metal–organic framework (RuCu MOF) as the ECL signal-transmitting probe and three types of PdPt alloy core–shell nanocrystals with different crystal structures as signal-off probes. Compounding the copper-based MOF (Cu-MOF) precursor with ruthenium bipyridyl at room temperature facilitated the retention of the intrinsic crystallinity and high porosity of the MOFs as well as afforded excellent ECL performance. Since bipyridine ruthenium in RuCu MOFs could transfer energies to the organic ligand (H3BTC), the ultra-efficient ligand luminescent ECL signal probe was finally obtained, which greatly improved the sensitivity of the aptasensor. To further improve the sensitivity of the aptasensor, the quenching effects of noble metal nanoalloy particles with different crystal states were investigated, which contained PdPt octahedral (PdPtOct), PdPt rhombic dodecahedral (PdPtRD), and PdPt nanocube (PdPtNC). Among them, the PdPtRD nanocrystal exhibited higher activity and excellent durability, stemming from the charge redistribution caused by the hybridization of Pt and Pd atoms. Moreover, PdPtRD could also load more −NH2–DNA strands because it exposed more active sites with a large specific surface area. The fabricated aptasensor exhibited outstanding sensitivity and stability in MC-LR detection, with a linear detection range of 0.0001–50 ng mL–1. This study provides valuable directions for the application of alloy nanoparticles of noble metals and bimetallic MOFs in the field of ECL immunoassay.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.3c00301</identifier><identifier>PMID: 37216427</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Alloys ; Analytical chemistry ; Analytical methods ; Bimetals ; Biosensing Techniques - methods ; Chemistry ; Copper ; Copper - chemistry ; DNA probes ; Drinking water ; Durability ; Electrochemical Techniques - methods ; Electrochemiluminescence ; Heavy metals ; Hybridization ; Immunoassay ; Ligands ; Limit of Detection ; Luminescent Measurements - methods ; Metal Nanoparticles - chemistry ; Metal-organic frameworks ; Metal-Organic Frameworks - chemistry ; Metals ; Microcystin-LR ; Microcystins ; Nanoalloys ; Nanocrystals ; Nanoparticles ; Noble metals ; Palladium ; Porosity ; Room temperature ; Ruthenium ; Ruthenium - chemistry ; Sensitivity ; Water pollution ; Water quality</subject><ispartof>Analytical chemistry (Washington), 2023-06, Vol.95 (22), p.8487-8495</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Jun 6, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3271-5a5c9a5837bb2c3149391dd0332bd38c5ba5d05076451c365150a4437ee604cd3</citedby><cites>FETCH-LOGICAL-a3271-5a5c9a5837bb2c3149391dd0332bd38c5ba5d05076451c365150a4437ee604cd3</cites><orcidid>0000-0003-0301-1189 ; 0000-0002-7061-8944 ; 0000-0002-8732-5988 ; 0000-0002-9002-8845 ; 0000-0002-3034-8046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37216427$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Guanhui</creatorcontrib><creatorcontrib>Du, Yu</creatorcontrib><creatorcontrib>Zhang, Nuo</creatorcontrib><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Bai, Guozhen</creatorcontrib><creatorcontrib>Ma, Hongmin</creatorcontrib><creatorcontrib>Wu, Dan</creatorcontrib><creatorcontrib>Cao, Wei</creatorcontrib><creatorcontrib>Wei, Qin</creatorcontrib><title>Bimetallic Metal–Organic Frameworks as an Efficient Capture Probe in Signal On–Off–On Electrochemiluminescence Aptasensor for Microcystin-LR Detection</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>To ensure drinking water quality, the development of rapid and accurate analytical methods is essential. Herein, a highly sensitive electrochemiluminescence (ECL) aptasensor-based on the signal on–off–on strategy was developed to detect the water pollutant microcystin-LR (MC-LR). This strategy was based on a newly prepared ruthenium-copper metal–organic framework (RuCu MOF) as the ECL signal-transmitting probe and three types of PdPt alloy core–shell nanocrystals with different crystal structures as signal-off probes. Compounding the copper-based MOF (Cu-MOF) precursor with ruthenium bipyridyl at room temperature facilitated the retention of the intrinsic crystallinity and high porosity of the MOFs as well as afforded excellent ECL performance. Since bipyridine ruthenium in RuCu MOFs could transfer energies to the organic ligand (H3BTC), the ultra-efficient ligand luminescent ECL signal probe was finally obtained, which greatly improved the sensitivity of the aptasensor. To further improve the sensitivity of the aptasensor, the quenching effects of noble metal nanoalloy particles with different crystal states were investigated, which contained PdPt octahedral (PdPtOct), PdPt rhombic dodecahedral (PdPtRD), and PdPt nanocube (PdPtNC). Among them, the PdPtRD nanocrystal exhibited higher activity and excellent durability, stemming from the charge redistribution caused by the hybridization of Pt and Pd atoms. Moreover, PdPtRD could also load more −NH2–DNA strands because it exposed more active sites with a large specific surface area. The fabricated aptasensor exhibited outstanding sensitivity and stability in MC-LR detection, with a linear detection range of 0.0001–50 ng mL–1. This study provides valuable directions for the application of alloy nanoparticles of noble metals and bimetallic MOFs in the field of ECL immunoassay.</description><subject>Alloys</subject><subject>Analytical chemistry</subject><subject>Analytical methods</subject><subject>Bimetals</subject><subject>Biosensing Techniques - methods</subject><subject>Chemistry</subject><subject>Copper</subject><subject>Copper - chemistry</subject><subject>DNA probes</subject><subject>Drinking water</subject><subject>Durability</subject><subject>Electrochemical Techniques - methods</subject><subject>Electrochemiluminescence</subject><subject>Heavy metals</subject><subject>Hybridization</subject><subject>Immunoassay</subject><subject>Ligands</subject><subject>Limit of Detection</subject><subject>Luminescent Measurements - methods</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal-organic frameworks</subject><subject>Metal-Organic Frameworks - chemistry</subject><subject>Metals</subject><subject>Microcystin-LR</subject><subject>Microcystins</subject><subject>Nanoalloys</subject><subject>Nanocrystals</subject><subject>Nanoparticles</subject><subject>Noble metals</subject><subject>Palladium</subject><subject>Porosity</subject><subject>Room temperature</subject><subject>Ruthenium</subject><subject>Ruthenium - chemistry</subject><subject>Sensitivity</subject><subject>Water pollution</subject><subject>Water quality</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kctu1DAUhi1ERYfCGyBkiQ2bTM_xJcksy9AC0lSDuKwjxzkpLokztROh7ngHtjwdT4KjmXbRRSXf9f3H_9HP2CuEJYLAU2Pj0njT2R_UL6UFkIBP2AK1gCwvS_GULSA9ZqIAOGbPY7wGQATMn7FjWQjMlSgW7O8719Nous5Zfjkf_v3-sw1Xxqf7RTA9_RrCz8hNGp6ft62zjvzI12Y3ToH45zDUxJ3nX91V8sK3fta37bwmviM7hmF26Lqpd56iJW-Jn-1GE8nHIfA2zUtnE3UbR-ezzRf-nsakc4N_wY5a00V6edhP2PeL82_rj9lm--HT-myTGSkKzLTRdmV0KYu6FlaiWskVNg1IKepGllbXRjegociVRitzjRqMUrIgykHZRp6wt_u6uzDcTBTHqnfJadcZT8MUK1FiCVoVoBL65gF6PUwhtT5TQuYrJRETpfZU6ivGQG21C6434bZCqOb0qpRedZdedUgvyV4fik91T8296C6uBMAemOX3Hz9a8z9ut6zD</recordid><startdate>20230606</startdate><enddate>20230606</enddate><creator>Zhao, Guanhui</creator><creator>Du, Yu</creator><creator>Zhang, Nuo</creator><creator>Li, Yuan</creator><creator>Bai, Guozhen</creator><creator>Ma, Hongmin</creator><creator>Wu, Dan</creator><creator>Cao, Wei</creator><creator>Wei, Qin</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0301-1189</orcidid><orcidid>https://orcid.org/0000-0002-7061-8944</orcidid><orcidid>https://orcid.org/0000-0002-8732-5988</orcidid><orcidid>https://orcid.org/0000-0002-9002-8845</orcidid><orcidid>https://orcid.org/0000-0002-3034-8046</orcidid></search><sort><creationdate>20230606</creationdate><title>Bimetallic Metal–Organic Frameworks as an Efficient Capture Probe in Signal On–Off–On Electrochemiluminescence Aptasensor for Microcystin-LR Detection</title><author>Zhao, Guanhui ; Du, Yu ; Zhang, Nuo ; Li, Yuan ; Bai, Guozhen ; Ma, Hongmin ; Wu, Dan ; Cao, Wei ; Wei, Qin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3271-5a5c9a5837bb2c3149391dd0332bd38c5ba5d05076451c365150a4437ee604cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloys</topic><topic>Analytical chemistry</topic><topic>Analytical methods</topic><topic>Bimetals</topic><topic>Biosensing Techniques - methods</topic><topic>Chemistry</topic><topic>Copper</topic><topic>Copper - chemistry</topic><topic>DNA probes</topic><topic>Drinking water</topic><topic>Durability</topic><topic>Electrochemical Techniques - methods</topic><topic>Electrochemiluminescence</topic><topic>Heavy metals</topic><topic>Hybridization</topic><topic>Immunoassay</topic><topic>Ligands</topic><topic>Limit of Detection</topic><topic>Luminescent Measurements - methods</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal-organic frameworks</topic><topic>Metal-Organic Frameworks - chemistry</topic><topic>Metals</topic><topic>Microcystin-LR</topic><topic>Microcystins</topic><topic>Nanoalloys</topic><topic>Nanocrystals</topic><topic>Nanoparticles</topic><topic>Noble metals</topic><topic>Palladium</topic><topic>Porosity</topic><topic>Room temperature</topic><topic>Ruthenium</topic><topic>Ruthenium - chemistry</topic><topic>Sensitivity</topic><topic>Water pollution</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Guanhui</creatorcontrib><creatorcontrib>Du, Yu</creatorcontrib><creatorcontrib>Zhang, Nuo</creatorcontrib><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Bai, Guozhen</creatorcontrib><creatorcontrib>Ma, Hongmin</creatorcontrib><creatorcontrib>Wu, Dan</creatorcontrib><creatorcontrib>Cao, Wei</creatorcontrib><creatorcontrib>Wei, Qin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Guanhui</au><au>Du, Yu</au><au>Zhang, Nuo</au><au>Li, Yuan</au><au>Bai, Guozhen</au><au>Ma, Hongmin</au><au>Wu, Dan</au><au>Cao, Wei</au><au>Wei, Qin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bimetallic Metal–Organic Frameworks as an Efficient Capture Probe in Signal On–Off–On Electrochemiluminescence Aptasensor for Microcystin-LR Detection</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2023-06-06</date><risdate>2023</risdate><volume>95</volume><issue>22</issue><spage>8487</spage><epage>8495</epage><pages>8487-8495</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>To ensure drinking water quality, the development of rapid and accurate analytical methods is essential. Herein, a highly sensitive electrochemiluminescence (ECL) aptasensor-based on the signal on–off–on strategy was developed to detect the water pollutant microcystin-LR (MC-LR). This strategy was based on a newly prepared ruthenium-copper metal–organic framework (RuCu MOF) as the ECL signal-transmitting probe and three types of PdPt alloy core–shell nanocrystals with different crystal structures as signal-off probes. Compounding the copper-based MOF (Cu-MOF) precursor with ruthenium bipyridyl at room temperature facilitated the retention of the intrinsic crystallinity and high porosity of the MOFs as well as afforded excellent ECL performance. Since bipyridine ruthenium in RuCu MOFs could transfer energies to the organic ligand (H3BTC), the ultra-efficient ligand luminescent ECL signal probe was finally obtained, which greatly improved the sensitivity of the aptasensor. To further improve the sensitivity of the aptasensor, the quenching effects of noble metal nanoalloy particles with different crystal states were investigated, which contained PdPt octahedral (PdPtOct), PdPt rhombic dodecahedral (PdPtRD), and PdPt nanocube (PdPtNC). Among them, the PdPtRD nanocrystal exhibited higher activity and excellent durability, stemming from the charge redistribution caused by the hybridization of Pt and Pd atoms. Moreover, PdPtRD could also load more −NH2–DNA strands because it exposed more active sites with a large specific surface area. The fabricated aptasensor exhibited outstanding sensitivity and stability in MC-LR detection, with a linear detection range of 0.0001–50 ng mL–1. This study provides valuable directions for the application of alloy nanoparticles of noble metals and bimetallic MOFs in the field of ECL immunoassay.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37216427</pmid><doi>10.1021/acs.analchem.3c00301</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0301-1189</orcidid><orcidid>https://orcid.org/0000-0002-7061-8944</orcidid><orcidid>https://orcid.org/0000-0002-8732-5988</orcidid><orcidid>https://orcid.org/0000-0002-9002-8845</orcidid><orcidid>https://orcid.org/0000-0002-3034-8046</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2023-06, Vol.95 (22), p.8487-8495 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_2818054704 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Alloys Analytical chemistry Analytical methods Bimetals Biosensing Techniques - methods Chemistry Copper Copper - chemistry DNA probes Drinking water Durability Electrochemical Techniques - methods Electrochemiluminescence Heavy metals Hybridization Immunoassay Ligands Limit of Detection Luminescent Measurements - methods Metal Nanoparticles - chemistry Metal-organic frameworks Metal-Organic Frameworks - chemistry Metals Microcystin-LR Microcystins Nanoalloys Nanocrystals Nanoparticles Noble metals Palladium Porosity Room temperature Ruthenium Ruthenium - chemistry Sensitivity Water pollution Water quality |
title | Bimetallic Metal–Organic Frameworks as an Efficient Capture Probe in Signal On–Off–On Electrochemiluminescence Aptasensor for Microcystin-LR Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A19%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bimetallic%20Metal%E2%80%93Organic%20Frameworks%20as%20an%20Efficient%20Capture%20Probe%20in%20Signal%20On%E2%80%93Off%E2%80%93On%20Electrochemiluminescence%20Aptasensor%20for%20Microcystin-LR%20Detection&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Zhao,%20Guanhui&rft.date=2023-06-06&rft.volume=95&rft.issue=22&rft.spage=8487&rft.epage=8495&rft.pages=8487-8495&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.3c00301&rft_dat=%3Cproquest_cross%3E2818054704%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3271-5a5c9a5837bb2c3149391dd0332bd38c5ba5d05076451c365150a4437ee604cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2823694311&rft_id=info:pmid/37216427&rfr_iscdi=true |