Loading…

Bimetallic Metal–Organic Frameworks as an Efficient Capture Probe in Signal On–Off–On Electrochemiluminescence Aptasensor for Microcystin-LR Detection

To ensure drinking water quality, the development of rapid and accurate analytical methods is essential. Herein, a highly sensitive electrochemiluminescence (ECL) aptasensor-based on the signal on–off–on strategy was developed to detect the water pollutant microcystin-LR (MC-LR). This strategy was b...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2023-06, Vol.95 (22), p.8487-8495
Main Authors: Zhao, Guanhui, Du, Yu, Zhang, Nuo, Li, Yuan, Bai, Guozhen, Ma, Hongmin, Wu, Dan, Cao, Wei, Wei, Qin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a3271-5a5c9a5837bb2c3149391dd0332bd38c5ba5d05076451c365150a4437ee604cd3
cites cdi_FETCH-LOGICAL-a3271-5a5c9a5837bb2c3149391dd0332bd38c5ba5d05076451c365150a4437ee604cd3
container_end_page 8495
container_issue 22
container_start_page 8487
container_title Analytical chemistry (Washington)
container_volume 95
creator Zhao, Guanhui
Du, Yu
Zhang, Nuo
Li, Yuan
Bai, Guozhen
Ma, Hongmin
Wu, Dan
Cao, Wei
Wei, Qin
description To ensure drinking water quality, the development of rapid and accurate analytical methods is essential. Herein, a highly sensitive electrochemiluminescence (ECL) aptasensor-based on the signal on–off–on strategy was developed to detect the water pollutant microcystin-LR (MC-LR). This strategy was based on a newly prepared ruthenium-copper metal–organic framework (RuCu MOF) as the ECL signal-transmitting probe and three types of PdPt alloy core–shell nanocrystals with different crystal structures as signal-off probes. Compounding the copper-based MOF (Cu-MOF) precursor with ruthenium bipyridyl at room temperature facilitated the retention of the intrinsic crystallinity and high porosity of the MOFs as well as afforded excellent ECL performance. Since bipyridine ruthenium in RuCu MOFs could transfer energies to the organic ligand (H3BTC), the ultra-efficient ligand luminescent ECL signal probe was finally obtained, which greatly improved the sensitivity of the aptasensor. To further improve the sensitivity of the aptasensor, the quenching effects of noble metal nanoalloy particles with different crystal states were investigated, which contained PdPt octahedral (PdPtOct), PdPt rhombic dodecahedral (PdPtRD), and PdPt nanocube (PdPtNC). Among them, the PdPtRD nanocrystal exhibited higher activity and excellent durability, stemming from the charge redistribution caused by the hybridization of Pt and Pd atoms. Moreover, PdPtRD could also load more −NH2–DNA strands because it exposed more active sites with a large specific surface area. The fabricated aptasensor exhibited outstanding sensitivity and stability in MC-LR detection, with a linear detection range of 0.0001–50 ng mL–1. This study provides valuable directions for the application of alloy nanoparticles of noble metals and bimetallic MOFs in the field of ECL immunoassay.
doi_str_mv 10.1021/acs.analchem.3c00301
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2818054704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818054704</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3271-5a5c9a5837bb2c3149391dd0332bd38c5ba5d05076451c365150a4437ee604cd3</originalsourceid><addsrcrecordid>eNp9kctu1DAUhi1ERYfCGyBkiQ2bTM_xJcksy9AC0lSDuKwjxzkpLokztROh7ngHtjwdT4KjmXbRRSXf9f3H_9HP2CuEJYLAU2Pj0njT2R_UL6UFkIBP2AK1gCwvS_GULSA9ZqIAOGbPY7wGQATMn7FjWQjMlSgW7O8719Nous5Zfjkf_v3-sw1Xxqf7RTA9_RrCz8hNGp6ft62zjvzI12Y3ToH45zDUxJ3nX91V8sK3fta37bwmviM7hmF26Lqpd56iJW-Jn-1GE8nHIfA2zUtnE3UbR-ezzRf-nsakc4N_wY5a00V6edhP2PeL82_rj9lm--HT-myTGSkKzLTRdmV0KYu6FlaiWskVNg1IKepGllbXRjegociVRitzjRqMUrIgykHZRp6wt_u6uzDcTBTHqnfJadcZT8MUK1FiCVoVoBL65gF6PUwhtT5TQuYrJRETpfZU6ivGQG21C6434bZCqOb0qpRedZdedUgvyV4fik91T8296C6uBMAemOX3Hz9a8z9ut6zD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823694311</pqid></control><display><type>article</type><title>Bimetallic Metal–Organic Frameworks as an Efficient Capture Probe in Signal On–Off–On Electrochemiluminescence Aptasensor for Microcystin-LR Detection</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Zhao, Guanhui ; Du, Yu ; Zhang, Nuo ; Li, Yuan ; Bai, Guozhen ; Ma, Hongmin ; Wu, Dan ; Cao, Wei ; Wei, Qin</creator><creatorcontrib>Zhao, Guanhui ; Du, Yu ; Zhang, Nuo ; Li, Yuan ; Bai, Guozhen ; Ma, Hongmin ; Wu, Dan ; Cao, Wei ; Wei, Qin</creatorcontrib><description>To ensure drinking water quality, the development of rapid and accurate analytical methods is essential. Herein, a highly sensitive electrochemiluminescence (ECL) aptasensor-based on the signal on–off–on strategy was developed to detect the water pollutant microcystin-LR (MC-LR). This strategy was based on a newly prepared ruthenium-copper metal–organic framework (RuCu MOF) as the ECL signal-transmitting probe and three types of PdPt alloy core–shell nanocrystals with different crystal structures as signal-off probes. Compounding the copper-based MOF (Cu-MOF) precursor with ruthenium bipyridyl at room temperature facilitated the retention of the intrinsic crystallinity and high porosity of the MOFs as well as afforded excellent ECL performance. Since bipyridine ruthenium in RuCu MOFs could transfer energies to the organic ligand (H3BTC), the ultra-efficient ligand luminescent ECL signal probe was finally obtained, which greatly improved the sensitivity of the aptasensor. To further improve the sensitivity of the aptasensor, the quenching effects of noble metal nanoalloy particles with different crystal states were investigated, which contained PdPt octahedral (PdPtOct), PdPt rhombic dodecahedral (PdPtRD), and PdPt nanocube (PdPtNC). Among them, the PdPtRD nanocrystal exhibited higher activity and excellent durability, stemming from the charge redistribution caused by the hybridization of Pt and Pd atoms. Moreover, PdPtRD could also load more −NH2–DNA strands because it exposed more active sites with a large specific surface area. The fabricated aptasensor exhibited outstanding sensitivity and stability in MC-LR detection, with a linear detection range of 0.0001–50 ng mL–1. This study provides valuable directions for the application of alloy nanoparticles of noble metals and bimetallic MOFs in the field of ECL immunoassay.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.3c00301</identifier><identifier>PMID: 37216427</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Alloys ; Analytical chemistry ; Analytical methods ; Bimetals ; Biosensing Techniques - methods ; Chemistry ; Copper ; Copper - chemistry ; DNA probes ; Drinking water ; Durability ; Electrochemical Techniques - methods ; Electrochemiluminescence ; Heavy metals ; Hybridization ; Immunoassay ; Ligands ; Limit of Detection ; Luminescent Measurements - methods ; Metal Nanoparticles - chemistry ; Metal-organic frameworks ; Metal-Organic Frameworks - chemistry ; Metals ; Microcystin-LR ; Microcystins ; Nanoalloys ; Nanocrystals ; Nanoparticles ; Noble metals ; Palladium ; Porosity ; Room temperature ; Ruthenium ; Ruthenium - chemistry ; Sensitivity ; Water pollution ; Water quality</subject><ispartof>Analytical chemistry (Washington), 2023-06, Vol.95 (22), p.8487-8495</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Jun 6, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3271-5a5c9a5837bb2c3149391dd0332bd38c5ba5d05076451c365150a4437ee604cd3</citedby><cites>FETCH-LOGICAL-a3271-5a5c9a5837bb2c3149391dd0332bd38c5ba5d05076451c365150a4437ee604cd3</cites><orcidid>0000-0003-0301-1189 ; 0000-0002-7061-8944 ; 0000-0002-8732-5988 ; 0000-0002-9002-8845 ; 0000-0002-3034-8046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37216427$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Guanhui</creatorcontrib><creatorcontrib>Du, Yu</creatorcontrib><creatorcontrib>Zhang, Nuo</creatorcontrib><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Bai, Guozhen</creatorcontrib><creatorcontrib>Ma, Hongmin</creatorcontrib><creatorcontrib>Wu, Dan</creatorcontrib><creatorcontrib>Cao, Wei</creatorcontrib><creatorcontrib>Wei, Qin</creatorcontrib><title>Bimetallic Metal–Organic Frameworks as an Efficient Capture Probe in Signal On–Off–On Electrochemiluminescence Aptasensor for Microcystin-LR Detection</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>To ensure drinking water quality, the development of rapid and accurate analytical methods is essential. Herein, a highly sensitive electrochemiluminescence (ECL) aptasensor-based on the signal on–off–on strategy was developed to detect the water pollutant microcystin-LR (MC-LR). This strategy was based on a newly prepared ruthenium-copper metal–organic framework (RuCu MOF) as the ECL signal-transmitting probe and three types of PdPt alloy core–shell nanocrystals with different crystal structures as signal-off probes. Compounding the copper-based MOF (Cu-MOF) precursor with ruthenium bipyridyl at room temperature facilitated the retention of the intrinsic crystallinity and high porosity of the MOFs as well as afforded excellent ECL performance. Since bipyridine ruthenium in RuCu MOFs could transfer energies to the organic ligand (H3BTC), the ultra-efficient ligand luminescent ECL signal probe was finally obtained, which greatly improved the sensitivity of the aptasensor. To further improve the sensitivity of the aptasensor, the quenching effects of noble metal nanoalloy particles with different crystal states were investigated, which contained PdPt octahedral (PdPtOct), PdPt rhombic dodecahedral (PdPtRD), and PdPt nanocube (PdPtNC). Among them, the PdPtRD nanocrystal exhibited higher activity and excellent durability, stemming from the charge redistribution caused by the hybridization of Pt and Pd atoms. Moreover, PdPtRD could also load more −NH2–DNA strands because it exposed more active sites with a large specific surface area. The fabricated aptasensor exhibited outstanding sensitivity and stability in MC-LR detection, with a linear detection range of 0.0001–50 ng mL–1. This study provides valuable directions for the application of alloy nanoparticles of noble metals and bimetallic MOFs in the field of ECL immunoassay.</description><subject>Alloys</subject><subject>Analytical chemistry</subject><subject>Analytical methods</subject><subject>Bimetals</subject><subject>Biosensing Techniques - methods</subject><subject>Chemistry</subject><subject>Copper</subject><subject>Copper - chemistry</subject><subject>DNA probes</subject><subject>Drinking water</subject><subject>Durability</subject><subject>Electrochemical Techniques - methods</subject><subject>Electrochemiluminescence</subject><subject>Heavy metals</subject><subject>Hybridization</subject><subject>Immunoassay</subject><subject>Ligands</subject><subject>Limit of Detection</subject><subject>Luminescent Measurements - methods</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal-organic frameworks</subject><subject>Metal-Organic Frameworks - chemistry</subject><subject>Metals</subject><subject>Microcystin-LR</subject><subject>Microcystins</subject><subject>Nanoalloys</subject><subject>Nanocrystals</subject><subject>Nanoparticles</subject><subject>Noble metals</subject><subject>Palladium</subject><subject>Porosity</subject><subject>Room temperature</subject><subject>Ruthenium</subject><subject>Ruthenium - chemistry</subject><subject>Sensitivity</subject><subject>Water pollution</subject><subject>Water quality</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kctu1DAUhi1ERYfCGyBkiQ2bTM_xJcksy9AC0lSDuKwjxzkpLokztROh7ngHtjwdT4KjmXbRRSXf9f3H_9HP2CuEJYLAU2Pj0njT2R_UL6UFkIBP2AK1gCwvS_GULSA9ZqIAOGbPY7wGQATMn7FjWQjMlSgW7O8719Nous5Zfjkf_v3-sw1Xxqf7RTA9_RrCz8hNGp6ft62zjvzI12Y3ToH45zDUxJ3nX91V8sK3fta37bwmviM7hmF26Lqpd56iJW-Jn-1GE8nHIfA2zUtnE3UbR-ezzRf-nsakc4N_wY5a00V6edhP2PeL82_rj9lm--HT-myTGSkKzLTRdmV0KYu6FlaiWskVNg1IKepGllbXRjegociVRitzjRqMUrIgykHZRp6wt_u6uzDcTBTHqnfJadcZT8MUK1FiCVoVoBL65gF6PUwhtT5TQuYrJRETpfZU6ivGQG21C6434bZCqOb0qpRedZdedUgvyV4fik91T8296C6uBMAemOX3Hz9a8z9ut6zD</recordid><startdate>20230606</startdate><enddate>20230606</enddate><creator>Zhao, Guanhui</creator><creator>Du, Yu</creator><creator>Zhang, Nuo</creator><creator>Li, Yuan</creator><creator>Bai, Guozhen</creator><creator>Ma, Hongmin</creator><creator>Wu, Dan</creator><creator>Cao, Wei</creator><creator>Wei, Qin</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0301-1189</orcidid><orcidid>https://orcid.org/0000-0002-7061-8944</orcidid><orcidid>https://orcid.org/0000-0002-8732-5988</orcidid><orcidid>https://orcid.org/0000-0002-9002-8845</orcidid><orcidid>https://orcid.org/0000-0002-3034-8046</orcidid></search><sort><creationdate>20230606</creationdate><title>Bimetallic Metal–Organic Frameworks as an Efficient Capture Probe in Signal On–Off–On Electrochemiluminescence Aptasensor for Microcystin-LR Detection</title><author>Zhao, Guanhui ; Du, Yu ; Zhang, Nuo ; Li, Yuan ; Bai, Guozhen ; Ma, Hongmin ; Wu, Dan ; Cao, Wei ; Wei, Qin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3271-5a5c9a5837bb2c3149391dd0332bd38c5ba5d05076451c365150a4437ee604cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloys</topic><topic>Analytical chemistry</topic><topic>Analytical methods</topic><topic>Bimetals</topic><topic>Biosensing Techniques - methods</topic><topic>Chemistry</topic><topic>Copper</topic><topic>Copper - chemistry</topic><topic>DNA probes</topic><topic>Drinking water</topic><topic>Durability</topic><topic>Electrochemical Techniques - methods</topic><topic>Electrochemiluminescence</topic><topic>Heavy metals</topic><topic>Hybridization</topic><topic>Immunoassay</topic><topic>Ligands</topic><topic>Limit of Detection</topic><topic>Luminescent Measurements - methods</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal-organic frameworks</topic><topic>Metal-Organic Frameworks - chemistry</topic><topic>Metals</topic><topic>Microcystin-LR</topic><topic>Microcystins</topic><topic>Nanoalloys</topic><topic>Nanocrystals</topic><topic>Nanoparticles</topic><topic>Noble metals</topic><topic>Palladium</topic><topic>Porosity</topic><topic>Room temperature</topic><topic>Ruthenium</topic><topic>Ruthenium - chemistry</topic><topic>Sensitivity</topic><topic>Water pollution</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Guanhui</creatorcontrib><creatorcontrib>Du, Yu</creatorcontrib><creatorcontrib>Zhang, Nuo</creatorcontrib><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Bai, Guozhen</creatorcontrib><creatorcontrib>Ma, Hongmin</creatorcontrib><creatorcontrib>Wu, Dan</creatorcontrib><creatorcontrib>Cao, Wei</creatorcontrib><creatorcontrib>Wei, Qin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Guanhui</au><au>Du, Yu</au><au>Zhang, Nuo</au><au>Li, Yuan</au><au>Bai, Guozhen</au><au>Ma, Hongmin</au><au>Wu, Dan</au><au>Cao, Wei</au><au>Wei, Qin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bimetallic Metal–Organic Frameworks as an Efficient Capture Probe in Signal On–Off–On Electrochemiluminescence Aptasensor for Microcystin-LR Detection</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2023-06-06</date><risdate>2023</risdate><volume>95</volume><issue>22</issue><spage>8487</spage><epage>8495</epage><pages>8487-8495</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>To ensure drinking water quality, the development of rapid and accurate analytical methods is essential. Herein, a highly sensitive electrochemiluminescence (ECL) aptasensor-based on the signal on–off–on strategy was developed to detect the water pollutant microcystin-LR (MC-LR). This strategy was based on a newly prepared ruthenium-copper metal–organic framework (RuCu MOF) as the ECL signal-transmitting probe and three types of PdPt alloy core–shell nanocrystals with different crystal structures as signal-off probes. Compounding the copper-based MOF (Cu-MOF) precursor with ruthenium bipyridyl at room temperature facilitated the retention of the intrinsic crystallinity and high porosity of the MOFs as well as afforded excellent ECL performance. Since bipyridine ruthenium in RuCu MOFs could transfer energies to the organic ligand (H3BTC), the ultra-efficient ligand luminescent ECL signal probe was finally obtained, which greatly improved the sensitivity of the aptasensor. To further improve the sensitivity of the aptasensor, the quenching effects of noble metal nanoalloy particles with different crystal states were investigated, which contained PdPt octahedral (PdPtOct), PdPt rhombic dodecahedral (PdPtRD), and PdPt nanocube (PdPtNC). Among them, the PdPtRD nanocrystal exhibited higher activity and excellent durability, stemming from the charge redistribution caused by the hybridization of Pt and Pd atoms. Moreover, PdPtRD could also load more −NH2–DNA strands because it exposed more active sites with a large specific surface area. The fabricated aptasensor exhibited outstanding sensitivity and stability in MC-LR detection, with a linear detection range of 0.0001–50 ng mL–1. This study provides valuable directions for the application of alloy nanoparticles of noble metals and bimetallic MOFs in the field of ECL immunoassay.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37216427</pmid><doi>10.1021/acs.analchem.3c00301</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0301-1189</orcidid><orcidid>https://orcid.org/0000-0002-7061-8944</orcidid><orcidid>https://orcid.org/0000-0002-8732-5988</orcidid><orcidid>https://orcid.org/0000-0002-9002-8845</orcidid><orcidid>https://orcid.org/0000-0002-3034-8046</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2023-06, Vol.95 (22), p.8487-8495
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2818054704
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Alloys
Analytical chemistry
Analytical methods
Bimetals
Biosensing Techniques - methods
Chemistry
Copper
Copper - chemistry
DNA probes
Drinking water
Durability
Electrochemical Techniques - methods
Electrochemiluminescence
Heavy metals
Hybridization
Immunoassay
Ligands
Limit of Detection
Luminescent Measurements - methods
Metal Nanoparticles - chemistry
Metal-organic frameworks
Metal-Organic Frameworks - chemistry
Metals
Microcystin-LR
Microcystins
Nanoalloys
Nanocrystals
Nanoparticles
Noble metals
Palladium
Porosity
Room temperature
Ruthenium
Ruthenium - chemistry
Sensitivity
Water pollution
Water quality
title Bimetallic Metal–Organic Frameworks as an Efficient Capture Probe in Signal On–Off–On Electrochemiluminescence Aptasensor for Microcystin-LR Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A19%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bimetallic%20Metal%E2%80%93Organic%20Frameworks%20as%20an%20Efficient%20Capture%20Probe%20in%20Signal%20On%E2%80%93Off%E2%80%93On%20Electrochemiluminescence%20Aptasensor%20for%20Microcystin-LR%20Detection&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Zhao,%20Guanhui&rft.date=2023-06-06&rft.volume=95&rft.issue=22&rft.spage=8487&rft.epage=8495&rft.pages=8487-8495&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.3c00301&rft_dat=%3Cproquest_cross%3E2818054704%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3271-5a5c9a5837bb2c3149391dd0332bd38c5ba5d05076451c365150a4437ee604cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2823694311&rft_id=info:pmid/37216427&rfr_iscdi=true