Loading…

Microbial Reductive Dechlorination by a Commercially Available Dechlorinating Consortium Is Not Inhibited by Perfluoroalkyl Acids (PFAAs) at Field-Relevant Concentrations

Perfluoroalkyl acids (PFAAs) have been shown to inhibit biodegradation (i.e., organohalide respiration) of chlorinated ethenes. The potential negative impacts of PFAAs on microbial species performing organohalide respiration, particularly Dehalococcoides mccartyi (Dhc), and the efficacy of in situ b...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2023-06, Vol.57 (22), p.8301-8312
Main Authors: Hnatko, Jason P., Liu, Chen, Elsey, Jack L., Dong, Sheng, Fortner, John D., Pennell, Kurt D., Abriola, Linda M., Cápiro, Natalie L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Perfluoroalkyl acids (PFAAs) have been shown to inhibit biodegradation (i.e., organohalide respiration) of chlorinated ethenes. The potential negative impacts of PFAAs on microbial species performing organohalide respiration, particularly Dehalococcoides mccartyi (Dhc), and the efficacy of in situ bioremediation are a critical concern for comingled PFAA-chlorinated ethene plumes. Batch reactor (no soil) and microcosm (with soil) experiments, containing a PFAA mixture and bioaugmented with KB-1, were completed to assess the impact of PFAAs on chlorinated ethene organohalide respiration. In batch reactors, PFAAs delayed complete biodegradation of cis-1,2-dichloroethene (cis-DCE) to ethene. Maximum substrate utilization rates (a metric for quantifying biodegradation rates) were fit to batch reactor experiments using a numerical model that accounted for chlorinated ethene losses to septa. Fitted values for cis-DCE and vinyl chloride biodegradation were significantly lower (p < 0.05) in batch reactors containing ≥50 mg/L PFAAs. Examination of reductive dehalogenase genes implicated in ethene formation revealed a PFAA-associated change in the Dhc community from cells harboring the vcrA gene to those harboring the bvcA gene. Organohalide respiration of chlorinated ethenes was not impaired in microcosm experiments with PFAA concentrations of 38.7 mg/L and less, suggesting that a microbial community containing multiple strains of Dhc is unlikely to be inhibited by PFAAs at lower, environmentally relevant concentrations.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.2c04815