Loading…

E2EFP-MIL: End-to-end and high-generalizability weakly supervised deep convolutional network for lung cancer classification from whole slide image

Efficient and accurate distinction of histopathological subtype of lung cancer is quite critical for the individualized treatment. So far, artificial intelligence techniques have been developed, whose performance yet remained debatable on more heterogenous data, hindering their clinical deployment....

Full description

Saved in:
Bibliographic Details
Published in:Medical image analysis 2023-08, Vol.88, p.102837-102837, Article 102837
Main Authors: Cao, Lei, Wang, Jie, Zhang, Yuanyuan, Rong, Zhiwei, Wang, Meng, Wang, Liuying, Ji, Jianxin, Qian, Youhui, Zhang, Liuchao, Wu, Hao, Song, Jiali, Liu, Zheng, Wang, Wenjie, Li, Shuang, Wang, Peiyu, Xu, Zhenyi, Zhang, Jingyuan, Zhao, Liang, Wang, Hang, Sun, Mengting, Huang, Xing, Yin, Rong, Lu, Yuhong, Liu, Ziqian, Deng, Kui, Wang, Gongwei, Qiu, Mantang, Li, Kang, Wang, Jun, Hou, Yan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-4e2ae2d5301078a9226771a8e9b555f6506ce866082190ea927dd3f689d86c0c3
cites cdi_FETCH-LOGICAL-c359t-4e2ae2d5301078a9226771a8e9b555f6506ce866082190ea927dd3f689d86c0c3
container_end_page 102837
container_issue
container_start_page 102837
container_title Medical image analysis
container_volume 88
creator Cao, Lei
Wang, Jie
Zhang, Yuanyuan
Rong, Zhiwei
Wang, Meng
Wang, Liuying
Ji, Jianxin
Qian, Youhui
Zhang, Liuchao
Wu, Hao
Song, Jiali
Liu, Zheng
Wang, Wenjie
Li, Shuang
Wang, Peiyu
Xu, Zhenyi
Zhang, Jingyuan
Zhao, Liang
Wang, Hang
Sun, Mengting
Huang, Xing
Yin, Rong
Lu, Yuhong
Liu, Ziqian
Deng, Kui
Wang, Gongwei
Qiu, Mantang
Li, Kang
Wang, Jun
Hou, Yan
description Efficient and accurate distinction of histopathological subtype of lung cancer is quite critical for the individualized treatment. So far, artificial intelligence techniques have been developed, whose performance yet remained debatable on more heterogenous data, hindering their clinical deployment. Here, we propose an end-to-end, well-generalized and data-efficient weakly supervised deep learning-based method. The method, end-to-end feature pyramid deep multi-instance learning model (E2EFP-MIL), contains an iterative sampling module, a trainable feature pyramid module and a robust feature aggregation module. E2EFP-MIL uses end-to-end learning to extract generalized morphological features automatically and identify discriminative histomorphological patterns. This method is trained with 1007 whole slide images (WSIs) of lung cancer from TCGA, with AUCs of 0.95–0.97 in test sets. We validated E2EFP-MIL in 5 real-world external heterogenous cohorts including nearly 1600 WSIs from both United States and China with AUCs of 0.94–0.97, and found that 100–200 training images are enough to achieve an AUC of >0.9. E2EFP-MIL overperforms multiple state-of-the-art MIL-based methods with high accuracy and low hardware requirements. Excellent and robust results prove generalizability and effectiveness of E2EFP-MIL in clinical practice. Our code is available at https://github.com/raycaohmu/E2EFP-MIL. [Display omitted] •A novel end-to-end and highly-generalized weakly supervised deep learning method to aid in lung cancer subtype diagnosis.•Patch sampling module and feature aggregation module to learn features more effectively and comprehensively.•Data efficient, 100 to 200 slides instead of thousands of ones is enough obtain test AUCs of >0.9.•International, multicentre evaluation showing a promising generalizability on more heterogenous real-world data.•Results better than the other deep learning methods in the identification of lung cancer subtypes.
doi_str_mv 10.1016/j.media.2023.102837
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2818055384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S136184152300097X</els_id><sourcerecordid>2818055384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-4e2ae2d5301078a9226771a8e9b555f6506ce866082190ea927dd3f689d86c0c3</originalsourceid><addsrcrecordid>eNp9kc9uEzEQxi0EoqXwBEjIRy6b-s_a60XigKoUKgXBAc6WY88mTh072LuJwmPwxDik7ZHDyCP7N_5m5kPoLSUzSqi83sy24LyZMcJ4vWGKd8_QJeWSNqpl_PlTTsUFelXKhhDStS15iS54x6jsuLxEf-Zsfvu9-Xq3-IDn0TVjaiA6bGqs_WrdrCBCNsH_Nksf_HjEBzD34YjLtIO89wUcdgA7bFPcpzCNPkUTcITxkPI9HlLGYYorbE20kLENphQ_eGtOIB5y2uLDOgXAJXgH2G_NCl6jF4MJBd48nFfo5-38x82XZvHt893Np0VjuejHpgVmgDnBCSWdMj1jsuuoUdAvhRCDFERaUFISxWhPoAKdc3yQqndKWmL5FXp__neX068Jyqi3vlgIwURIU9FMUUWE4KqtKD-jNqdSMgx6l2uv-agp0Scz9Eb_M0OfzNBnM2rVuweBaVlfn2oet1-Bj2cA6ph7D1kX66FuyvkMdtQu-f8K_AX6SZzY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818055384</pqid></control><display><type>article</type><title>E2EFP-MIL: End-to-end and high-generalizability weakly supervised deep convolutional network for lung cancer classification from whole slide image</title><source>ScienceDirect Journals</source><creator>Cao, Lei ; Wang, Jie ; Zhang, Yuanyuan ; Rong, Zhiwei ; Wang, Meng ; Wang, Liuying ; Ji, Jianxin ; Qian, Youhui ; Zhang, Liuchao ; Wu, Hao ; Song, Jiali ; Liu, Zheng ; Wang, Wenjie ; Li, Shuang ; Wang, Peiyu ; Xu, Zhenyi ; Zhang, Jingyuan ; Zhao, Liang ; Wang, Hang ; Sun, Mengting ; Huang, Xing ; Yin, Rong ; Lu, Yuhong ; Liu, Ziqian ; Deng, Kui ; Wang, Gongwei ; Qiu, Mantang ; Li, Kang ; Wang, Jun ; Hou, Yan</creator><creatorcontrib>Cao, Lei ; Wang, Jie ; Zhang, Yuanyuan ; Rong, Zhiwei ; Wang, Meng ; Wang, Liuying ; Ji, Jianxin ; Qian, Youhui ; Zhang, Liuchao ; Wu, Hao ; Song, Jiali ; Liu, Zheng ; Wang, Wenjie ; Li, Shuang ; Wang, Peiyu ; Xu, Zhenyi ; Zhang, Jingyuan ; Zhao, Liang ; Wang, Hang ; Sun, Mengting ; Huang, Xing ; Yin, Rong ; Lu, Yuhong ; Liu, Ziqian ; Deng, Kui ; Wang, Gongwei ; Qiu, Mantang ; Li, Kang ; Wang, Jun ; Hou, Yan</creatorcontrib><description>Efficient and accurate distinction of histopathological subtype of lung cancer is quite critical for the individualized treatment. So far, artificial intelligence techniques have been developed, whose performance yet remained debatable on more heterogenous data, hindering their clinical deployment. Here, we propose an end-to-end, well-generalized and data-efficient weakly supervised deep learning-based method. The method, end-to-end feature pyramid deep multi-instance learning model (E2EFP-MIL), contains an iterative sampling module, a trainable feature pyramid module and a robust feature aggregation module. E2EFP-MIL uses end-to-end learning to extract generalized morphological features automatically and identify discriminative histomorphological patterns. This method is trained with 1007 whole slide images (WSIs) of lung cancer from TCGA, with AUCs of 0.95–0.97 in test sets. We validated E2EFP-MIL in 5 real-world external heterogenous cohorts including nearly 1600 WSIs from both United States and China with AUCs of 0.94–0.97, and found that 100–200 training images are enough to achieve an AUC of &gt;0.9. E2EFP-MIL overperforms multiple state-of-the-art MIL-based methods with high accuracy and low hardware requirements. Excellent and robust results prove generalizability and effectiveness of E2EFP-MIL in clinical practice. Our code is available at https://github.com/raycaohmu/E2EFP-MIL. [Display omitted] •A novel end-to-end and highly-generalized weakly supervised deep learning method to aid in lung cancer subtype diagnosis.•Patch sampling module and feature aggregation module to learn features more effectively and comprehensively.•Data efficient, 100 to 200 slides instead of thousands of ones is enough obtain test AUCs of &gt;0.9.•International, multicentre evaluation showing a promising generalizability on more heterogenous real-world data.•Results better than the other deep learning methods in the identification of lung cancer subtypes.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2023.102837</identifier><identifier>PMID: 37216736</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Area Under Curve ; Artificial Intelligence ; China ; Classification ; Computational pathology ; Convolutional neural network ; Deep learning ; Humans ; Lung cancer ; Lung Neoplasms - diagnostic imaging ; Neural Networks, Computer ; Subtype diagnosis ; Weakly supervised learning</subject><ispartof>Medical image analysis, 2023-08, Vol.88, p.102837-102837, Article 102837</ispartof><rights>2023 Elsevier B.V.</rights><rights>Copyright © 2023 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-4e2ae2d5301078a9226771a8e9b555f6506ce866082190ea927dd3f689d86c0c3</citedby><cites>FETCH-LOGICAL-c359t-4e2ae2d5301078a9226771a8e9b555f6506ce866082190ea927dd3f689d86c0c3</cites><orcidid>0000-0001-6939-7163 ; 0000-0001-7326-7679 ; 0000-0002-0970-8545 ; 0000-0002-8666-0127 ; 0000-0001-7546-0894 ; 0000-0002-8014-2716 ; 0000-0002-0419-9139 ; 0000-0002-2960-3169</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37216736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Lei</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Zhang, Yuanyuan</creatorcontrib><creatorcontrib>Rong, Zhiwei</creatorcontrib><creatorcontrib>Wang, Meng</creatorcontrib><creatorcontrib>Wang, Liuying</creatorcontrib><creatorcontrib>Ji, Jianxin</creatorcontrib><creatorcontrib>Qian, Youhui</creatorcontrib><creatorcontrib>Zhang, Liuchao</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Song, Jiali</creatorcontrib><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Wang, Wenjie</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Wang, Peiyu</creatorcontrib><creatorcontrib>Xu, Zhenyi</creatorcontrib><creatorcontrib>Zhang, Jingyuan</creatorcontrib><creatorcontrib>Zhao, Liang</creatorcontrib><creatorcontrib>Wang, Hang</creatorcontrib><creatorcontrib>Sun, Mengting</creatorcontrib><creatorcontrib>Huang, Xing</creatorcontrib><creatorcontrib>Yin, Rong</creatorcontrib><creatorcontrib>Lu, Yuhong</creatorcontrib><creatorcontrib>Liu, Ziqian</creatorcontrib><creatorcontrib>Deng, Kui</creatorcontrib><creatorcontrib>Wang, Gongwei</creatorcontrib><creatorcontrib>Qiu, Mantang</creatorcontrib><creatorcontrib>Li, Kang</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Hou, Yan</creatorcontrib><title>E2EFP-MIL: End-to-end and high-generalizability weakly supervised deep convolutional network for lung cancer classification from whole slide image</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>Efficient and accurate distinction of histopathological subtype of lung cancer is quite critical for the individualized treatment. So far, artificial intelligence techniques have been developed, whose performance yet remained debatable on more heterogenous data, hindering their clinical deployment. Here, we propose an end-to-end, well-generalized and data-efficient weakly supervised deep learning-based method. The method, end-to-end feature pyramid deep multi-instance learning model (E2EFP-MIL), contains an iterative sampling module, a trainable feature pyramid module and a robust feature aggregation module. E2EFP-MIL uses end-to-end learning to extract generalized morphological features automatically and identify discriminative histomorphological patterns. This method is trained with 1007 whole slide images (WSIs) of lung cancer from TCGA, with AUCs of 0.95–0.97 in test sets. We validated E2EFP-MIL in 5 real-world external heterogenous cohorts including nearly 1600 WSIs from both United States and China with AUCs of 0.94–0.97, and found that 100–200 training images are enough to achieve an AUC of &gt;0.9. E2EFP-MIL overperforms multiple state-of-the-art MIL-based methods with high accuracy and low hardware requirements. Excellent and robust results prove generalizability and effectiveness of E2EFP-MIL in clinical practice. Our code is available at https://github.com/raycaohmu/E2EFP-MIL. [Display omitted] •A novel end-to-end and highly-generalized weakly supervised deep learning method to aid in lung cancer subtype diagnosis.•Patch sampling module and feature aggregation module to learn features more effectively and comprehensively.•Data efficient, 100 to 200 slides instead of thousands of ones is enough obtain test AUCs of &gt;0.9.•International, multicentre evaluation showing a promising generalizability on more heterogenous real-world data.•Results better than the other deep learning methods in the identification of lung cancer subtypes.</description><subject>Area Under Curve</subject><subject>Artificial Intelligence</subject><subject>China</subject><subject>Classification</subject><subject>Computational pathology</subject><subject>Convolutional neural network</subject><subject>Deep learning</subject><subject>Humans</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - diagnostic imaging</subject><subject>Neural Networks, Computer</subject><subject>Subtype diagnosis</subject><subject>Weakly supervised learning</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kc9uEzEQxi0EoqXwBEjIRy6b-s_a60XigKoUKgXBAc6WY88mTh072LuJwmPwxDik7ZHDyCP7N_5m5kPoLSUzSqi83sy24LyZMcJ4vWGKd8_QJeWSNqpl_PlTTsUFelXKhhDStS15iS54x6jsuLxEf-Zsfvu9-Xq3-IDn0TVjaiA6bGqs_WrdrCBCNsH_Nksf_HjEBzD34YjLtIO89wUcdgA7bFPcpzCNPkUTcITxkPI9HlLGYYorbE20kLENphQ_eGtOIB5y2uLDOgXAJXgH2G_NCl6jF4MJBd48nFfo5-38x82XZvHt893Np0VjuejHpgVmgDnBCSWdMj1jsuuoUdAvhRCDFERaUFISxWhPoAKdc3yQqndKWmL5FXp__neX068Jyqi3vlgIwURIU9FMUUWE4KqtKD-jNqdSMgx6l2uv-agp0Scz9Eb_M0OfzNBnM2rVuweBaVlfn2oet1-Bj2cA6ph7D1kX66FuyvkMdtQu-f8K_AX6SZzY</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Cao, Lei</creator><creator>Wang, Jie</creator><creator>Zhang, Yuanyuan</creator><creator>Rong, Zhiwei</creator><creator>Wang, Meng</creator><creator>Wang, Liuying</creator><creator>Ji, Jianxin</creator><creator>Qian, Youhui</creator><creator>Zhang, Liuchao</creator><creator>Wu, Hao</creator><creator>Song, Jiali</creator><creator>Liu, Zheng</creator><creator>Wang, Wenjie</creator><creator>Li, Shuang</creator><creator>Wang, Peiyu</creator><creator>Xu, Zhenyi</creator><creator>Zhang, Jingyuan</creator><creator>Zhao, Liang</creator><creator>Wang, Hang</creator><creator>Sun, Mengting</creator><creator>Huang, Xing</creator><creator>Yin, Rong</creator><creator>Lu, Yuhong</creator><creator>Liu, Ziqian</creator><creator>Deng, Kui</creator><creator>Wang, Gongwei</creator><creator>Qiu, Mantang</creator><creator>Li, Kang</creator><creator>Wang, Jun</creator><creator>Hou, Yan</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6939-7163</orcidid><orcidid>https://orcid.org/0000-0001-7326-7679</orcidid><orcidid>https://orcid.org/0000-0002-0970-8545</orcidid><orcidid>https://orcid.org/0000-0002-8666-0127</orcidid><orcidid>https://orcid.org/0000-0001-7546-0894</orcidid><orcidid>https://orcid.org/0000-0002-8014-2716</orcidid><orcidid>https://orcid.org/0000-0002-0419-9139</orcidid><orcidid>https://orcid.org/0000-0002-2960-3169</orcidid></search><sort><creationdate>202308</creationdate><title>E2EFP-MIL: End-to-end and high-generalizability weakly supervised deep convolutional network for lung cancer classification from whole slide image</title><author>Cao, Lei ; Wang, Jie ; Zhang, Yuanyuan ; Rong, Zhiwei ; Wang, Meng ; Wang, Liuying ; Ji, Jianxin ; Qian, Youhui ; Zhang, Liuchao ; Wu, Hao ; Song, Jiali ; Liu, Zheng ; Wang, Wenjie ; Li, Shuang ; Wang, Peiyu ; Xu, Zhenyi ; Zhang, Jingyuan ; Zhao, Liang ; Wang, Hang ; Sun, Mengting ; Huang, Xing ; Yin, Rong ; Lu, Yuhong ; Liu, Ziqian ; Deng, Kui ; Wang, Gongwei ; Qiu, Mantang ; Li, Kang ; Wang, Jun ; Hou, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-4e2ae2d5301078a9226771a8e9b555f6506ce866082190ea927dd3f689d86c0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Area Under Curve</topic><topic>Artificial Intelligence</topic><topic>China</topic><topic>Classification</topic><topic>Computational pathology</topic><topic>Convolutional neural network</topic><topic>Deep learning</topic><topic>Humans</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - diagnostic imaging</topic><topic>Neural Networks, Computer</topic><topic>Subtype diagnosis</topic><topic>Weakly supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Lei</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Zhang, Yuanyuan</creatorcontrib><creatorcontrib>Rong, Zhiwei</creatorcontrib><creatorcontrib>Wang, Meng</creatorcontrib><creatorcontrib>Wang, Liuying</creatorcontrib><creatorcontrib>Ji, Jianxin</creatorcontrib><creatorcontrib>Qian, Youhui</creatorcontrib><creatorcontrib>Zhang, Liuchao</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Song, Jiali</creatorcontrib><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Wang, Wenjie</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Wang, Peiyu</creatorcontrib><creatorcontrib>Xu, Zhenyi</creatorcontrib><creatorcontrib>Zhang, Jingyuan</creatorcontrib><creatorcontrib>Zhao, Liang</creatorcontrib><creatorcontrib>Wang, Hang</creatorcontrib><creatorcontrib>Sun, Mengting</creatorcontrib><creatorcontrib>Huang, Xing</creatorcontrib><creatorcontrib>Yin, Rong</creatorcontrib><creatorcontrib>Lu, Yuhong</creatorcontrib><creatorcontrib>Liu, Ziqian</creatorcontrib><creatorcontrib>Deng, Kui</creatorcontrib><creatorcontrib>Wang, Gongwei</creatorcontrib><creatorcontrib>Qiu, Mantang</creatorcontrib><creatorcontrib>Li, Kang</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Hou, Yan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Lei</au><au>Wang, Jie</au><au>Zhang, Yuanyuan</au><au>Rong, Zhiwei</au><au>Wang, Meng</au><au>Wang, Liuying</au><au>Ji, Jianxin</au><au>Qian, Youhui</au><au>Zhang, Liuchao</au><au>Wu, Hao</au><au>Song, Jiali</au><au>Liu, Zheng</au><au>Wang, Wenjie</au><au>Li, Shuang</au><au>Wang, Peiyu</au><au>Xu, Zhenyi</au><au>Zhang, Jingyuan</au><au>Zhao, Liang</au><au>Wang, Hang</au><au>Sun, Mengting</au><au>Huang, Xing</au><au>Yin, Rong</au><au>Lu, Yuhong</au><au>Liu, Ziqian</au><au>Deng, Kui</au><au>Wang, Gongwei</au><au>Qiu, Mantang</au><au>Li, Kang</au><au>Wang, Jun</au><au>Hou, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>E2EFP-MIL: End-to-end and high-generalizability weakly supervised deep convolutional network for lung cancer classification from whole slide image</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2023-08</date><risdate>2023</risdate><volume>88</volume><spage>102837</spage><epage>102837</epage><pages>102837-102837</pages><artnum>102837</artnum><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>Efficient and accurate distinction of histopathological subtype of lung cancer is quite critical for the individualized treatment. So far, artificial intelligence techniques have been developed, whose performance yet remained debatable on more heterogenous data, hindering their clinical deployment. Here, we propose an end-to-end, well-generalized and data-efficient weakly supervised deep learning-based method. The method, end-to-end feature pyramid deep multi-instance learning model (E2EFP-MIL), contains an iterative sampling module, a trainable feature pyramid module and a robust feature aggregation module. E2EFP-MIL uses end-to-end learning to extract generalized morphological features automatically and identify discriminative histomorphological patterns. This method is trained with 1007 whole slide images (WSIs) of lung cancer from TCGA, with AUCs of 0.95–0.97 in test sets. We validated E2EFP-MIL in 5 real-world external heterogenous cohorts including nearly 1600 WSIs from both United States and China with AUCs of 0.94–0.97, and found that 100–200 training images are enough to achieve an AUC of &gt;0.9. E2EFP-MIL overperforms multiple state-of-the-art MIL-based methods with high accuracy and low hardware requirements. Excellent and robust results prove generalizability and effectiveness of E2EFP-MIL in clinical practice. Our code is available at https://github.com/raycaohmu/E2EFP-MIL. [Display omitted] •A novel end-to-end and highly-generalized weakly supervised deep learning method to aid in lung cancer subtype diagnosis.•Patch sampling module and feature aggregation module to learn features more effectively and comprehensively.•Data efficient, 100 to 200 slides instead of thousands of ones is enough obtain test AUCs of &gt;0.9.•International, multicentre evaluation showing a promising generalizability on more heterogenous real-world data.•Results better than the other deep learning methods in the identification of lung cancer subtypes.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>37216736</pmid><doi>10.1016/j.media.2023.102837</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6939-7163</orcidid><orcidid>https://orcid.org/0000-0001-7326-7679</orcidid><orcidid>https://orcid.org/0000-0002-0970-8545</orcidid><orcidid>https://orcid.org/0000-0002-8666-0127</orcidid><orcidid>https://orcid.org/0000-0001-7546-0894</orcidid><orcidid>https://orcid.org/0000-0002-8014-2716</orcidid><orcidid>https://orcid.org/0000-0002-0419-9139</orcidid><orcidid>https://orcid.org/0000-0002-2960-3169</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1361-8415
ispartof Medical image analysis, 2023-08, Vol.88, p.102837-102837, Article 102837
issn 1361-8415
1361-8423
language eng
recordid cdi_proquest_miscellaneous_2818055384
source ScienceDirect Journals
subjects Area Under Curve
Artificial Intelligence
China
Classification
Computational pathology
Convolutional neural network
Deep learning
Humans
Lung cancer
Lung Neoplasms - diagnostic imaging
Neural Networks, Computer
Subtype diagnosis
Weakly supervised learning
title E2EFP-MIL: End-to-end and high-generalizability weakly supervised deep convolutional network for lung cancer classification from whole slide image
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A41%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=E2EFP-MIL:%20End-to-end%20and%20high-generalizability%20weakly%20supervised%20deep%20convolutional%20network%20for%20lung%20cancer%20classification%20from%20whole%20slide%20image&rft.jtitle=Medical%20image%20analysis&rft.au=Cao,%20Lei&rft.date=2023-08&rft.volume=88&rft.spage=102837&rft.epage=102837&rft.pages=102837-102837&rft.artnum=102837&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2023.102837&rft_dat=%3Cproquest_cross%3E2818055384%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-4e2ae2d5301078a9226771a8e9b555f6506ce866082190ea927dd3f689d86c0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2818055384&rft_id=info:pmid/37216736&rfr_iscdi=true