Loading…

Transition-Metal Single Atom Anchored on MoS2 for Enhancing Photocatalytic Hydrogen Production of g‑C3N4 Photocatalysts

Single-atom catalyst technology with near-100% atomic utilization and a well-defined coordination structure has provided new ideas for designing high-performance photocatalysts, which is also beneficial for reducing the usage of noble metal cocatalysts. Herein, a series of single-atomic MoS2-based c...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2023-06, Vol.15 (22), p.26670-26681
Main Authors: Han, Xin, Liu, Qiaona, Qian, An, Ye, Lei, Pu, Xin, Liu, Jichang, Jia, Xin, Wang, Rongjie, Ju, Feng, Sun, Hui, Zhao, Jigang, Ling, Hao
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 26681
container_issue 22
container_start_page 26670
container_title ACS applied materials & interfaces
container_volume 15
creator Han, Xin
Liu, Qiaona
Qian, An
Ye, Lei
Pu, Xin
Liu, Jichang
Jia, Xin
Wang, Rongjie
Ju, Feng
Sun, Hui
Zhao, Jigang
Ling, Hao
description Single-atom catalyst technology with near-100% atomic utilization and a well-defined coordination structure has provided new ideas for designing high-performance photocatalysts, which is also beneficial for reducing the usage of noble metal cocatalysts. Herein, a series of single-atomic MoS2-based cocatalysts where monoatomic Ru, Co, or Ni modify MoS2 (SA-MoS2) for enhancing the photocatalytic hydrogen production performance of g-C3N4 nanosheets (NSs) are rationally designed and synthesized. The 2D SA-MoS2/g-C3N4 photocatalysts with Ru, Co, or Ni single atoms show similar enhanced photocatalytic activity, and the optimized Ru1–MoS2/g-C3N4 photocatalyst has the highest hydrogen production rate of 11115 μmol/h/g, which is about 37 and 5 times higher than that of pure g-C3N4 and MoS2/g-C3N4 photocatalysts, respectively. Experimental and density functional theory calculation results reveal that the enhanced photocatalytic performance is mainly attributed to the synergistic effect and intimate interface between SA-MoS2 with well-defined coordination single-atomic structures and g-C3N4 NSs, which is conducive to the rapid interfacial charge transport, and the unique single-atomic structure of SA-MoS2 with modified electronic structure and appropriate hydrogen adsorption performance offers abundant reactive sites for enhancing the photocatalytic hydrogen production performance. This work provides new insight into improving the cocatalytic hydrogen production performance of MoS2 by a single-atomic strategy.
doi_str_mv 10.1021/acsami.3c02895
format article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2818058475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818058475</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1741-fe56457f31ad361cb427cadde90f844132627e0ba879cab3aef8b4af463c23103</originalsourceid><addsrcrecordid>eNpNkL1OwzAUhS0EEqWwMntESCn-TZyxqoAitVCpZbZuHLtNldoQJ0M3XoFX5ElI1QoxnTt89-joQ-iWkhEljD6AibCrRtwQpnJ5hgY0FyJRTLLzv1uIS3QV45aQlDMiB2i_asDHqq2CT-a2hRovK7-uLR63YYfH3mxCY0scPJ6HJcMuNPjRb8CbnsKLTWiDgf5r31YGT_dlE9bW40UTys4cOnFweP3z9T3hr-I_Htt4jS4c1NHenHKI3p8eV5NpMnt7fpmMZwnQTNDEWZkKmTlOoeQpNYVgmYGytDlxSgjKWcoySwpQWW6g4GCdKgQ4kXLDOCV8iO6OvR9N-OxsbPWuisbWNXgbuqiZoopIJTLZo_dHtFept6FrfD9MU6IPfvXRrz755b-273Eo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818058475</pqid></control><display><type>article</type><title>Transition-Metal Single Atom Anchored on MoS2 for Enhancing Photocatalytic Hydrogen Production of g‑C3N4 Photocatalysts</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Han, Xin ; Liu, Qiaona ; Qian, An ; Ye, Lei ; Pu, Xin ; Liu, Jichang ; Jia, Xin ; Wang, Rongjie ; Ju, Feng ; Sun, Hui ; Zhao, Jigang ; Ling, Hao</creator><creatorcontrib>Han, Xin ; Liu, Qiaona ; Qian, An ; Ye, Lei ; Pu, Xin ; Liu, Jichang ; Jia, Xin ; Wang, Rongjie ; Ju, Feng ; Sun, Hui ; Zhao, Jigang ; Ling, Hao</creatorcontrib><description>Single-atom catalyst technology with near-100% atomic utilization and a well-defined coordination structure has provided new ideas for designing high-performance photocatalysts, which is also beneficial for reducing the usage of noble metal cocatalysts. Herein, a series of single-atomic MoS2-based cocatalysts where monoatomic Ru, Co, or Ni modify MoS2 (SA-MoS2) for enhancing the photocatalytic hydrogen production performance of g-C3N4 nanosheets (NSs) are rationally designed and synthesized. The 2D SA-MoS2/g-C3N4 photocatalysts with Ru, Co, or Ni single atoms show similar enhanced photocatalytic activity, and the optimized Ru1–MoS2/g-C3N4 photocatalyst has the highest hydrogen production rate of 11115 μmol/h/g, which is about 37 and 5 times higher than that of pure g-C3N4 and MoS2/g-C3N4 photocatalysts, respectively. Experimental and density functional theory calculation results reveal that the enhanced photocatalytic performance is mainly attributed to the synergistic effect and intimate interface between SA-MoS2 with well-defined coordination single-atomic structures and g-C3N4 NSs, which is conducive to the rapid interfacial charge transport, and the unique single-atomic structure of SA-MoS2 with modified electronic structure and appropriate hydrogen adsorption performance offers abundant reactive sites for enhancing the photocatalytic hydrogen production performance. This work provides new insight into improving the cocatalytic hydrogen production performance of MoS2 by a single-atomic strategy.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c02895</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2023-06, Vol.15 (22), p.26670-26681</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4114-8680 ; 0000-0002-8544-756X ; 0000-0002-2773-7200 ; 0009-0007-1721-1938 ; 0000-0001-6430-9638 ; 0000-0002-5295-1778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Han, Xin</creatorcontrib><creatorcontrib>Liu, Qiaona</creatorcontrib><creatorcontrib>Qian, An</creatorcontrib><creatorcontrib>Ye, Lei</creatorcontrib><creatorcontrib>Pu, Xin</creatorcontrib><creatorcontrib>Liu, Jichang</creatorcontrib><creatorcontrib>Jia, Xin</creatorcontrib><creatorcontrib>Wang, Rongjie</creatorcontrib><creatorcontrib>Ju, Feng</creatorcontrib><creatorcontrib>Sun, Hui</creatorcontrib><creatorcontrib>Zhao, Jigang</creatorcontrib><creatorcontrib>Ling, Hao</creatorcontrib><title>Transition-Metal Single Atom Anchored on MoS2 for Enhancing Photocatalytic Hydrogen Production of g‑C3N4 Photocatalysts</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Single-atom catalyst technology with near-100% atomic utilization and a well-defined coordination structure has provided new ideas for designing high-performance photocatalysts, which is also beneficial for reducing the usage of noble metal cocatalysts. Herein, a series of single-atomic MoS2-based cocatalysts where monoatomic Ru, Co, or Ni modify MoS2 (SA-MoS2) for enhancing the photocatalytic hydrogen production performance of g-C3N4 nanosheets (NSs) are rationally designed and synthesized. The 2D SA-MoS2/g-C3N4 photocatalysts with Ru, Co, or Ni single atoms show similar enhanced photocatalytic activity, and the optimized Ru1–MoS2/g-C3N4 photocatalyst has the highest hydrogen production rate of 11115 μmol/h/g, which is about 37 and 5 times higher than that of pure g-C3N4 and MoS2/g-C3N4 photocatalysts, respectively. Experimental and density functional theory calculation results reveal that the enhanced photocatalytic performance is mainly attributed to the synergistic effect and intimate interface between SA-MoS2 with well-defined coordination single-atomic structures and g-C3N4 NSs, which is conducive to the rapid interfacial charge transport, and the unique single-atomic structure of SA-MoS2 with modified electronic structure and appropriate hydrogen adsorption performance offers abundant reactive sites for enhancing the photocatalytic hydrogen production performance. This work provides new insight into improving the cocatalytic hydrogen production performance of MoS2 by a single-atomic strategy.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkL1OwzAUhS0EEqWwMntESCn-TZyxqoAitVCpZbZuHLtNldoQJ0M3XoFX5ElI1QoxnTt89-joQ-iWkhEljD6AibCrRtwQpnJ5hgY0FyJRTLLzv1uIS3QV45aQlDMiB2i_asDHqq2CT-a2hRovK7-uLR63YYfH3mxCY0scPJ6HJcMuNPjRb8CbnsKLTWiDgf5r31YGT_dlE9bW40UTys4cOnFweP3z9T3hr-I_Htt4jS4c1NHenHKI3p8eV5NpMnt7fpmMZwnQTNDEWZkKmTlOoeQpNYVgmYGytDlxSgjKWcoySwpQWW6g4GCdKgQ4kXLDOCV8iO6OvR9N-OxsbPWuisbWNXgbuqiZoopIJTLZo_dHtFept6FrfD9MU6IPfvXRrz755b-273Eo</recordid><startdate>20230607</startdate><enddate>20230607</enddate><creator>Han, Xin</creator><creator>Liu, Qiaona</creator><creator>Qian, An</creator><creator>Ye, Lei</creator><creator>Pu, Xin</creator><creator>Liu, Jichang</creator><creator>Jia, Xin</creator><creator>Wang, Rongjie</creator><creator>Ju, Feng</creator><creator>Sun, Hui</creator><creator>Zhao, Jigang</creator><creator>Ling, Hao</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4114-8680</orcidid><orcidid>https://orcid.org/0000-0002-8544-756X</orcidid><orcidid>https://orcid.org/0000-0002-2773-7200</orcidid><orcidid>https://orcid.org/0009-0007-1721-1938</orcidid><orcidid>https://orcid.org/0000-0001-6430-9638</orcidid><orcidid>https://orcid.org/0000-0002-5295-1778</orcidid></search><sort><creationdate>20230607</creationdate><title>Transition-Metal Single Atom Anchored on MoS2 for Enhancing Photocatalytic Hydrogen Production of g‑C3N4 Photocatalysts</title><author>Han, Xin ; Liu, Qiaona ; Qian, An ; Ye, Lei ; Pu, Xin ; Liu, Jichang ; Jia, Xin ; Wang, Rongjie ; Ju, Feng ; Sun, Hui ; Zhao, Jigang ; Ling, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1741-fe56457f31ad361cb427cadde90f844132627e0ba879cab3aef8b4af463c23103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Xin</creatorcontrib><creatorcontrib>Liu, Qiaona</creatorcontrib><creatorcontrib>Qian, An</creatorcontrib><creatorcontrib>Ye, Lei</creatorcontrib><creatorcontrib>Pu, Xin</creatorcontrib><creatorcontrib>Liu, Jichang</creatorcontrib><creatorcontrib>Jia, Xin</creatorcontrib><creatorcontrib>Wang, Rongjie</creatorcontrib><creatorcontrib>Ju, Feng</creatorcontrib><creatorcontrib>Sun, Hui</creatorcontrib><creatorcontrib>Zhao, Jigang</creatorcontrib><creatorcontrib>Ling, Hao</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Xin</au><au>Liu, Qiaona</au><au>Qian, An</au><au>Ye, Lei</au><au>Pu, Xin</au><au>Liu, Jichang</au><au>Jia, Xin</au><au>Wang, Rongjie</au><au>Ju, Feng</au><au>Sun, Hui</au><au>Zhao, Jigang</au><au>Ling, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transition-Metal Single Atom Anchored on MoS2 for Enhancing Photocatalytic Hydrogen Production of g‑C3N4 Photocatalysts</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-06-07</date><risdate>2023</risdate><volume>15</volume><issue>22</issue><spage>26670</spage><epage>26681</epage><pages>26670-26681</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Single-atom catalyst technology with near-100% atomic utilization and a well-defined coordination structure has provided new ideas for designing high-performance photocatalysts, which is also beneficial for reducing the usage of noble metal cocatalysts. Herein, a series of single-atomic MoS2-based cocatalysts where monoatomic Ru, Co, or Ni modify MoS2 (SA-MoS2) for enhancing the photocatalytic hydrogen production performance of g-C3N4 nanosheets (NSs) are rationally designed and synthesized. The 2D SA-MoS2/g-C3N4 photocatalysts with Ru, Co, or Ni single atoms show similar enhanced photocatalytic activity, and the optimized Ru1–MoS2/g-C3N4 photocatalyst has the highest hydrogen production rate of 11115 μmol/h/g, which is about 37 and 5 times higher than that of pure g-C3N4 and MoS2/g-C3N4 photocatalysts, respectively. Experimental and density functional theory calculation results reveal that the enhanced photocatalytic performance is mainly attributed to the synergistic effect and intimate interface between SA-MoS2 with well-defined coordination single-atomic structures and g-C3N4 NSs, which is conducive to the rapid interfacial charge transport, and the unique single-atomic structure of SA-MoS2 with modified electronic structure and appropriate hydrogen adsorption performance offers abundant reactive sites for enhancing the photocatalytic hydrogen production performance. This work provides new insight into improving the cocatalytic hydrogen production performance of MoS2 by a single-atomic strategy.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.3c02895</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4114-8680</orcidid><orcidid>https://orcid.org/0000-0002-8544-756X</orcidid><orcidid>https://orcid.org/0000-0002-2773-7200</orcidid><orcidid>https://orcid.org/0009-0007-1721-1938</orcidid><orcidid>https://orcid.org/0000-0001-6430-9638</orcidid><orcidid>https://orcid.org/0000-0002-5295-1778</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-06, Vol.15 (22), p.26670-26681
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2818058475
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Energy, Environmental, and Catalysis Applications
title Transition-Metal Single Atom Anchored on MoS2 for Enhancing Photocatalytic Hydrogen Production of g‑C3N4 Photocatalysts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A07%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transition-Metal%20Single%20Atom%20Anchored%20on%20MoS2%20for%20Enhancing%20Photocatalytic%20Hydrogen%20Production%20of%20g%E2%80%91C3N4%20Photocatalysts&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Han,%20Xin&rft.date=2023-06-07&rft.volume=15&rft.issue=22&rft.spage=26670&rft.epage=26681&rft.pages=26670-26681&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c02895&rft_dat=%3Cproquest_acs_j%3E2818058475%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a1741-fe56457f31ad361cb427cadde90f844132627e0ba879cab3aef8b4af463c23103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2818058475&rft_id=info:pmid/&rfr_iscdi=true