Loading…
Photochromic Supramolecular Isomers Derived from Pb(II)-Bipyridinedicarboxylate Complexes
Photochromic metal–organic complexes (PMOCs) have received huge attention of chemists, thanks to their diverse structural characteristic and various available photo-modulate physicochemical functionalities. The organic ligand plays a crucial role in the quest of PMOCs with specific photo-responsive...
Saved in:
Published in: | Inorganic chemistry 2023-06, Vol.62 (22), p.8663-8669 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a351t-9ba1c3ff74b12ae818d33120f51dc9941cc4a97dba006b25044dd31e1c6f55e23 |
---|---|
cites | cdi_FETCH-LOGICAL-a351t-9ba1c3ff74b12ae818d33120f51dc9941cc4a97dba006b25044dd31e1c6f55e23 |
container_end_page | 8669 |
container_issue | 22 |
container_start_page | 8663 |
container_title | Inorganic chemistry |
container_volume | 62 |
creator | Liang, Zhen-Gang Li, Gang-Mei Ren, Xin-Ye Li, Jin-Hua Pan, Jie Han, Song-De |
description | Photochromic metal–organic complexes (PMOCs) have received huge attention of chemists, thanks to their diverse structural characteristic and various available photo-modulate physicochemical functionalities. The organic ligand plays a crucial role in the quest of PMOCs with specific photo-responsive functionalities. The multiple coordination modes of polydentate ligands also provide possibilities for forming isomeric MOCs, which may open a new perspective on the research of PMOCs. The exploration of suitable PMOC systems is significant for the yield of isomeric PMOCs. Taking into account extant PMOCs based on polypyridines and carboxylate as electron acceptors (EAs) and donors (EDs), the covalent fusion of suitable pyridyl and carboxyl species may produce single functionalized ligands bearing ED and EA moieties for the building of novel PMOCs. In this study, the coordination assembly of bipyridinedicarboxylate (2,2′-bipyridine-4,4′-dicarboxylic acid, H2bpdc) and Pb2+ ions generate two isomeric MOCs, [Pb(bpdc)]·H2O (1 and 2), which have the same chemical compositions with main discrepancies in the coordination mode of bpdc2– ligands. As expected, supramolecular isomers 1 and 2 exhibited different photochromic performance, thanks to the distinct microscopic functional structural units. A schematic encryption and anti-counterfeiting device based on complexes 1 and 2 has also been studied. Compared with the extensively studied PMOCs supported by photoactive ligands like pyridinium and naphthalimide-derivatives and PMOCs derived from mixed electron-accepting polydentate N-ligands and electron-donating ligands, our work provides a new idea for building PMOCs based on pyridinecarboxylic acid ligands. |
doi_str_mv | 10.1021/acs.inorgchem.3c00835 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2818746553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818746553</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-9ba1c3ff74b12ae818d33120f51dc9941cc4a97dba006b25044dd31e1c6f55e23</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EoqXwCaAsyyLFE8dpsoTyilSJSoAEq8ixJ9RVUge7Qe3f46qlW7wZL869ozmEXAIdAY3gRkg30ktjv-QcmxGTlKaMH5E-8IiGHOjHMelT6v-QJFmPnDm3oJRmLE5OSY-NI_9Y2iefs7lZGTm3ptEyeO1aKxpTo-xqYYPcmQatC-7R6h9UQeWpYFYO8_w6vNPtxmqll6i0FLY0600tVhhMTNPWuEZ3Tk4qUTu82M8BeX98eJs8h9OXp3xyOw0F47AKs1KAZFU1jkuIBKaQKsYgohUHJbMsBiljkY1VKShNyojTOFaKAYJMKs4xYgMy3PW21nx36FZFo53EuhZLNJ0rIl85jhPOmUf5DpXWOGexKlqrG2E3BdBia7XwVouD1WJv1eeu9iu6skF1SP1p9ADsgG1-YTq79Bf_U_oL7RaJHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818746553</pqid></control><display><type>article</type><title>Photochromic Supramolecular Isomers Derived from Pb(II)-Bipyridinedicarboxylate Complexes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Liang, Zhen-Gang ; Li, Gang-Mei ; Ren, Xin-Ye ; Li, Jin-Hua ; Pan, Jie ; Han, Song-De</creator><creatorcontrib>Liang, Zhen-Gang ; Li, Gang-Mei ; Ren, Xin-Ye ; Li, Jin-Hua ; Pan, Jie ; Han, Song-De</creatorcontrib><description>Photochromic metal–organic complexes (PMOCs) have received huge attention of chemists, thanks to their diverse structural characteristic and various available photo-modulate physicochemical functionalities. The organic ligand plays a crucial role in the quest of PMOCs with specific photo-responsive functionalities. The multiple coordination modes of polydentate ligands also provide possibilities for forming isomeric MOCs, which may open a new perspective on the research of PMOCs. The exploration of suitable PMOC systems is significant for the yield of isomeric PMOCs. Taking into account extant PMOCs based on polypyridines and carboxylate as electron acceptors (EAs) and donors (EDs), the covalent fusion of suitable pyridyl and carboxyl species may produce single functionalized ligands bearing ED and EA moieties for the building of novel PMOCs. In this study, the coordination assembly of bipyridinedicarboxylate (2,2′-bipyridine-4,4′-dicarboxylic acid, H2bpdc) and Pb2+ ions generate two isomeric MOCs, [Pb(bpdc)]·H2O (1 and 2), which have the same chemical compositions with main discrepancies in the coordination mode of bpdc2– ligands. As expected, supramolecular isomers 1 and 2 exhibited different photochromic performance, thanks to the distinct microscopic functional structural units. A schematic encryption and anti-counterfeiting device based on complexes 1 and 2 has also been studied. Compared with the extensively studied PMOCs supported by photoactive ligands like pyridinium and naphthalimide-derivatives and PMOCs derived from mixed electron-accepting polydentate N-ligands and electron-donating ligands, our work provides a new idea for building PMOCs based on pyridinecarboxylic acid ligands.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/acs.inorgchem.3c00835</identifier><identifier>PMID: 37222238</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Inorganic chemistry, 2023-06, Vol.62 (22), p.8663-8669</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-9ba1c3ff74b12ae818d33120f51dc9941cc4a97dba006b25044dd31e1c6f55e23</citedby><cites>FETCH-LOGICAL-a351t-9ba1c3ff74b12ae818d33120f51dc9941cc4a97dba006b25044dd31e1c6f55e23</cites><orcidid>0000-0001-6335-8083</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37222238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Zhen-Gang</creatorcontrib><creatorcontrib>Li, Gang-Mei</creatorcontrib><creatorcontrib>Ren, Xin-Ye</creatorcontrib><creatorcontrib>Li, Jin-Hua</creatorcontrib><creatorcontrib>Pan, Jie</creatorcontrib><creatorcontrib>Han, Song-De</creatorcontrib><title>Photochromic Supramolecular Isomers Derived from Pb(II)-Bipyridinedicarboxylate Complexes</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>Photochromic metal–organic complexes (PMOCs) have received huge attention of chemists, thanks to their diverse structural characteristic and various available photo-modulate physicochemical functionalities. The organic ligand plays a crucial role in the quest of PMOCs with specific photo-responsive functionalities. The multiple coordination modes of polydentate ligands also provide possibilities for forming isomeric MOCs, which may open a new perspective on the research of PMOCs. The exploration of suitable PMOC systems is significant for the yield of isomeric PMOCs. Taking into account extant PMOCs based on polypyridines and carboxylate as electron acceptors (EAs) and donors (EDs), the covalent fusion of suitable pyridyl and carboxyl species may produce single functionalized ligands bearing ED and EA moieties for the building of novel PMOCs. In this study, the coordination assembly of bipyridinedicarboxylate (2,2′-bipyridine-4,4′-dicarboxylic acid, H2bpdc) and Pb2+ ions generate two isomeric MOCs, [Pb(bpdc)]·H2O (1 and 2), which have the same chemical compositions with main discrepancies in the coordination mode of bpdc2– ligands. As expected, supramolecular isomers 1 and 2 exhibited different photochromic performance, thanks to the distinct microscopic functional structural units. A schematic encryption and anti-counterfeiting device based on complexes 1 and 2 has also been studied. Compared with the extensively studied PMOCs supported by photoactive ligands like pyridinium and naphthalimide-derivatives and PMOCs derived from mixed electron-accepting polydentate N-ligands and electron-donating ligands, our work provides a new idea for building PMOCs based on pyridinecarboxylic acid ligands.</description><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EoqXwCaAsyyLFE8dpsoTyilSJSoAEq8ixJ9RVUge7Qe3f46qlW7wZL869ozmEXAIdAY3gRkg30ktjv-QcmxGTlKaMH5E-8IiGHOjHMelT6v-QJFmPnDm3oJRmLE5OSY-NI_9Y2iefs7lZGTm3ptEyeO1aKxpTo-xqYYPcmQatC-7R6h9UQeWpYFYO8_w6vNPtxmqll6i0FLY0600tVhhMTNPWuEZ3Tk4qUTu82M8BeX98eJs8h9OXp3xyOw0F47AKs1KAZFU1jkuIBKaQKsYgohUHJbMsBiljkY1VKShNyojTOFaKAYJMKs4xYgMy3PW21nx36FZFo53EuhZLNJ0rIl85jhPOmUf5DpXWOGexKlqrG2E3BdBia7XwVouD1WJv1eeu9iu6skF1SP1p9ADsgG1-YTq79Bf_U_oL7RaJHg</recordid><startdate>20230605</startdate><enddate>20230605</enddate><creator>Liang, Zhen-Gang</creator><creator>Li, Gang-Mei</creator><creator>Ren, Xin-Ye</creator><creator>Li, Jin-Hua</creator><creator>Pan, Jie</creator><creator>Han, Song-De</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6335-8083</orcidid></search><sort><creationdate>20230605</creationdate><title>Photochromic Supramolecular Isomers Derived from Pb(II)-Bipyridinedicarboxylate Complexes</title><author>Liang, Zhen-Gang ; Li, Gang-Mei ; Ren, Xin-Ye ; Li, Jin-Hua ; Pan, Jie ; Han, Song-De</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-9ba1c3ff74b12ae818d33120f51dc9941cc4a97dba006b25044dd31e1c6f55e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Zhen-Gang</creatorcontrib><creatorcontrib>Li, Gang-Mei</creatorcontrib><creatorcontrib>Ren, Xin-Ye</creatorcontrib><creatorcontrib>Li, Jin-Hua</creatorcontrib><creatorcontrib>Pan, Jie</creatorcontrib><creatorcontrib>Han, Song-De</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Zhen-Gang</au><au>Li, Gang-Mei</au><au>Ren, Xin-Ye</au><au>Li, Jin-Hua</au><au>Pan, Jie</au><au>Han, Song-De</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photochromic Supramolecular Isomers Derived from Pb(II)-Bipyridinedicarboxylate Complexes</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>2023-06-05</date><risdate>2023</risdate><volume>62</volume><issue>22</issue><spage>8663</spage><epage>8669</epage><pages>8663-8669</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>Photochromic metal–organic complexes (PMOCs) have received huge attention of chemists, thanks to their diverse structural characteristic and various available photo-modulate physicochemical functionalities. The organic ligand plays a crucial role in the quest of PMOCs with specific photo-responsive functionalities. The multiple coordination modes of polydentate ligands also provide possibilities for forming isomeric MOCs, which may open a new perspective on the research of PMOCs. The exploration of suitable PMOC systems is significant for the yield of isomeric PMOCs. Taking into account extant PMOCs based on polypyridines and carboxylate as electron acceptors (EAs) and donors (EDs), the covalent fusion of suitable pyridyl and carboxyl species may produce single functionalized ligands bearing ED and EA moieties for the building of novel PMOCs. In this study, the coordination assembly of bipyridinedicarboxylate (2,2′-bipyridine-4,4′-dicarboxylic acid, H2bpdc) and Pb2+ ions generate two isomeric MOCs, [Pb(bpdc)]·H2O (1 and 2), which have the same chemical compositions with main discrepancies in the coordination mode of bpdc2– ligands. As expected, supramolecular isomers 1 and 2 exhibited different photochromic performance, thanks to the distinct microscopic functional structural units. A schematic encryption and anti-counterfeiting device based on complexes 1 and 2 has also been studied. Compared with the extensively studied PMOCs supported by photoactive ligands like pyridinium and naphthalimide-derivatives and PMOCs derived from mixed electron-accepting polydentate N-ligands and electron-donating ligands, our work provides a new idea for building PMOCs based on pyridinecarboxylic acid ligands.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37222238</pmid><doi>10.1021/acs.inorgchem.3c00835</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6335-8083</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-1669 |
ispartof | Inorganic chemistry, 2023-06, Vol.62 (22), p.8663-8669 |
issn | 0020-1669 1520-510X |
language | eng |
recordid | cdi_proquest_miscellaneous_2818746553 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Photochromic Supramolecular Isomers Derived from Pb(II)-Bipyridinedicarboxylate Complexes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A20%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photochromic%20Supramolecular%20Isomers%20Derived%20from%20Pb(II)-Bipyridinedicarboxylate%20Complexes&rft.jtitle=Inorganic%20chemistry&rft.au=Liang,%20Zhen-Gang&rft.date=2023-06-05&rft.volume=62&rft.issue=22&rft.spage=8663&rft.epage=8669&rft.pages=8663-8669&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/acs.inorgchem.3c00835&rft_dat=%3Cproquest_cross%3E2818746553%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a351t-9ba1c3ff74b12ae818d33120f51dc9941cc4a97dba006b25044dd31e1c6f55e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2818746553&rft_id=info:pmid/37222238&rfr_iscdi=true |