Loading…
Discovery of a Selective and Orally Bioavailable FGFR2 Degrader for Treating Gastric Cancer
Abnormal activation of fibroblast growth factor receptors (FGFRs) results in the development and progression of human cancers. FGFR2 is frequently amplified or mutated in cancers; therefore, it is an attractive target for tumor therapy. Despite the development of several pan-FGFR inhibitors, their l...
Saved in:
Published in: | Journal of medicinal chemistry 2023-06, Vol.66 (11), p.7438-7453 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abnormal activation of fibroblast growth factor receptors (FGFRs) results in the development and progression of human cancers. FGFR2 is frequently amplified or mutated in cancers; therefore, it is an attractive target for tumor therapy. Despite the development of several pan-FGFR inhibitors, their long-term therapeutic efficacy is hindered by acquired mutations and low isoform selectivity. Herein, we report the discovery of an efficient and selective FGFR2 proteolysis-targeting chimeric molecule, LC-MB12, that incorporates an essential rigid linker. LC-MB12 preferentially internalizes and degrades membrane-bound FGFR2 among the four FGFR isoforms; this may promote greater clinical benefits. LC-MB12 exhibits superior potency in FGFR signaling suppression and anti-proliferative activity compared to the parental inhibitor. Furthermore, LC-MB12 is orally bioavailable and shows significant antitumor effects in FGFR2-dependent gastric cancer in vivo. Taken together, LC-MB12 is a candidate FGFR2 degrader for alternative FGFR2-targeting strategies and offers a promising starting point for drug development. |
---|---|
ISSN: | 0022-2623 1520-4804 |
DOI: | 10.1021/acs.jmedchem.3c00150 |