Loading…
Electron-impact rotational excitation of water
Rotational excitation of H2O, HDO and D2O by thermal electron impact is studied using the molecular R-matrix method. Rate coefficients are obtained up to electron temperatures of 8000 K. De-excitation rates and critical electron densities are also given. It is shown that the dominant transitions are...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2004-01, Vol.347 (1), p.323-333 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5709-e1c690b666252353e364d7f85f0e0d8d1ca1d0549b3150bbb272fa972d2786843 |
---|---|
cites | cdi_FETCH-LOGICAL-c5709-e1c690b666252353e364d7f85f0e0d8d1ca1d0549b3150bbb272fa972d2786843 |
container_end_page | 333 |
container_issue | 1 |
container_start_page | 323 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 347 |
creator | Faure, Alexandre Gorfinkiel, Jimena D. Tennyson, Jonathan |
description | Rotational excitation of H2O, HDO and D2O by thermal electron impact is studied using the molecular R-matrix method. Rate coefficients are obtained up to electron temperatures of 8000 K. De-excitation rates and critical electron densities are also given. It is shown that the dominant transitions are those for which ΔJ= 0, ±1, as predicted by the dipolar Born approximation. However, a pure Born treatment is found to overestimate the cross-sections close to threshold energies and to neglect important (dipole forbidden) transitions, owing to the importance of short-range and threshold effects. In the context of cometary water, the contribution of electron collisions might explain the need for large H2O–H2O collisional excitation rates in population models that neglect electrons. |
doi_str_mv | 10.1111/j.1365-2966.2004.07209.x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28197193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1365-2966.2004.07209.x</oup_id><sourcerecordid>28197193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5709-e1c690b666252353e364d7f85f0e0d8d1ca1d0549b3150bbb272fa972d2786843</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhoMoOKf_oTd615qPJmkuvJA5N2VT_ALxJqRpCp1dM5OOdf_e1sq8UTA3ySHPc87hBSBAMELtOV9EiDAaYsFYhCGMI8gxFFGzBwa7j30wgJDQMOEIHYIj7xewJQlmAxCNS6NrZ6uwWK6UrgNna1UXtlJlYBpd9EVg82CjauOOwUGuSm9Ovu8heLkeP4-m4ex-cjO6nIWacihCgzQTMGWMYYoJJYawOON5QnNoYJZkSCuUQRqLlCAK0zTFHOdKcJxhnrAkJkNw1vddOfuxNr6Wy8JrU5aqMnbtJU6Q4EiQFkx6UDvrvTO5XLliqdxWIii7gORCdjnILgfZBSS_ApJNq55-z1BeqzJ3qtKF__EpRTHmqOUuem5TlGb77_5yfvfYvVqf9L5dr_6ww9-2C3ur8LVpdp5y75Jxwqmcvr7JBzKf3D6JK8nIJ05zlZE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28197193</pqid></control><display><type>article</type><title>Electron-impact rotational excitation of water</title><source>Open Access: Oxford University Press Open Journals</source><source>EZB Electronic Journals Library</source><creator>Faure, Alexandre ; Gorfinkiel, Jimena D. ; Tennyson, Jonathan</creator><creatorcontrib>Faure, Alexandre ; Gorfinkiel, Jimena D. ; Tennyson, Jonathan</creatorcontrib><description>Rotational excitation of H2O, HDO and D2O by thermal electron impact is studied using the molecular R-matrix method. Rate coefficients are obtained up to electron temperatures of 8000 K. De-excitation rates and critical electron densities are also given. It is shown that the dominant transitions are those for which ΔJ= 0, ±1, as predicted by the dipolar Born approximation. However, a pure Born treatment is found to overestimate the cross-sections close to threshold energies and to neglect important (dipole forbidden) transitions, owing to the importance of short-range and threshold effects. In the context of cometary water, the contribution of electron collisions might explain the need for large H2O–H2O collisional excitation rates in population models that neglect electrons.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1111/j.1365-2966.2004.07209.x</identifier><identifier>CODEN: MNRAA4</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>ISM: molecules ; molecular data ; molecular processes</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2004-01, Vol.347 (1), p.323-333</ispartof><rights>2004 RAS 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5709-e1c690b666252353e364d7f85f0e0d8d1ca1d0549b3150bbb272fa972d2786843</citedby><cites>FETCH-LOGICAL-c5709-e1c690b666252353e364d7f85f0e0d8d1ca1d0549b3150bbb272fa972d2786843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15514271$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Faure, Alexandre</creatorcontrib><creatorcontrib>Gorfinkiel, Jimena D.</creatorcontrib><creatorcontrib>Tennyson, Jonathan</creatorcontrib><title>Electron-impact rotational excitation of water</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Mon. Not. R. Astron. Soc</addtitle><addtitle>Mon. Not. R. Astron. Soc</addtitle><description>Rotational excitation of H2O, HDO and D2O by thermal electron impact is studied using the molecular R-matrix method. Rate coefficients are obtained up to electron temperatures of 8000 K. De-excitation rates and critical electron densities are also given. It is shown that the dominant transitions are those for which ΔJ= 0, ±1, as predicted by the dipolar Born approximation. However, a pure Born treatment is found to overestimate the cross-sections close to threshold energies and to neglect important (dipole forbidden) transitions, owing to the importance of short-range and threshold effects. In the context of cometary water, the contribution of electron collisions might explain the need for large H2O–H2O collisional excitation rates in population models that neglect electrons.</description><subject>ISM: molecules</subject><subject>molecular data</subject><subject>molecular processes</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkF1LwzAUhoMoOKf_oTd615qPJmkuvJA5N2VT_ALxJqRpCp1dM5OOdf_e1sq8UTA3ySHPc87hBSBAMELtOV9EiDAaYsFYhCGMI8gxFFGzBwa7j30wgJDQMOEIHYIj7xewJQlmAxCNS6NrZ6uwWK6UrgNna1UXtlJlYBpd9EVg82CjauOOwUGuSm9Ovu8heLkeP4-m4ex-cjO6nIWacihCgzQTMGWMYYoJJYawOON5QnNoYJZkSCuUQRqLlCAK0zTFHOdKcJxhnrAkJkNw1vddOfuxNr6Wy8JrU5aqMnbtJU6Q4EiQFkx6UDvrvTO5XLliqdxWIii7gORCdjnILgfZBSS_ApJNq55-z1BeqzJ3qtKF__EpRTHmqOUuem5TlGb77_5yfvfYvVqf9L5dr_6ww9-2C3ur8LVpdp5y75Jxwqmcvr7JBzKf3D6JK8nIJ05zlZE</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Faure, Alexandre</creator><creator>Gorfinkiel, Jimena D.</creator><creator>Tennyson, Jonathan</creator><general>Blackwell Science Ltd</general><general>Blackwell Science</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20040101</creationdate><title>Electron-impact rotational excitation of water</title><author>Faure, Alexandre ; Gorfinkiel, Jimena D. ; Tennyson, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5709-e1c690b666252353e364d7f85f0e0d8d1ca1d0549b3150bbb272fa972d2786843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>ISM: molecules</topic><topic>molecular data</topic><topic>molecular processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faure, Alexandre</creatorcontrib><creatorcontrib>Gorfinkiel, Jimena D.</creatorcontrib><creatorcontrib>Tennyson, Jonathan</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faure, Alexandre</au><au>Gorfinkiel, Jimena D.</au><au>Tennyson, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron-impact rotational excitation of water</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Mon. Not. R. Astron. Soc</stitle><addtitle>Mon. Not. R. Astron. Soc</addtitle><date>2004-01-01</date><risdate>2004</risdate><volume>347</volume><issue>1</issue><spage>323</spage><epage>333</epage><pages>323-333</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><coden>MNRAA4</coden><abstract>Rotational excitation of H2O, HDO and D2O by thermal electron impact is studied using the molecular R-matrix method. Rate coefficients are obtained up to electron temperatures of 8000 K. De-excitation rates and critical electron densities are also given. It is shown that the dominant transitions are those for which ΔJ= 0, ±1, as predicted by the dipolar Born approximation. However, a pure Born treatment is found to overestimate the cross-sections close to threshold energies and to neglect important (dipole forbidden) transitions, owing to the importance of short-range and threshold effects. In the context of cometary water, the contribution of electron collisions might explain the need for large H2O–H2O collisional excitation rates in population models that neglect electrons.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><doi>10.1111/j.1365-2966.2004.07209.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2004-01, Vol.347 (1), p.323-333 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_proquest_miscellaneous_28197193 |
source | Open Access: Oxford University Press Open Journals; EZB Electronic Journals Library |
subjects | ISM: molecules molecular data molecular processes |
title | Electron-impact rotational excitation of water |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A55%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron-impact%20rotational%20excitation%20of%20water&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Faure,%20Alexandre&rft.date=2004-01-01&rft.volume=347&rft.issue=1&rft.spage=323&rft.epage=333&rft.pages=323-333&rft.issn=0035-8711&rft.eissn=1365-2966&rft.coden=MNRAA4&rft_id=info:doi/10.1111/j.1365-2966.2004.07209.x&rft_dat=%3Cproquest_cross%3E28197193%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5709-e1c690b666252353e364d7f85f0e0d8d1ca1d0549b3150bbb272fa972d2786843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28197193&rft_id=info:pmid/&rft_oup_id=10.1111/j.1365-2966.2004.07209.x&rfr_iscdi=true |