Loading…

Electron-impact rotational excitation of water

Rotational excitation of H2O, HDO and D2O by thermal electron impact is studied using the molecular R-matrix method. Rate coefficients are obtained up to electron temperatures of 8000 K. De-excitation rates and critical electron densities are also given. It is shown that the dominant transitions are...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2004-01, Vol.347 (1), p.323-333
Main Authors: Faure, Alexandre, Gorfinkiel, Jimena D., Tennyson, Jonathan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5709-e1c690b666252353e364d7f85f0e0d8d1ca1d0549b3150bbb272fa972d2786843
cites cdi_FETCH-LOGICAL-c5709-e1c690b666252353e364d7f85f0e0d8d1ca1d0549b3150bbb272fa972d2786843
container_end_page 333
container_issue 1
container_start_page 323
container_title Monthly notices of the Royal Astronomical Society
container_volume 347
creator Faure, Alexandre
Gorfinkiel, Jimena D.
Tennyson, Jonathan
description Rotational excitation of H2O, HDO and D2O by thermal electron impact is studied using the molecular R-matrix method. Rate coefficients are obtained up to electron temperatures of 8000 K. De-excitation rates and critical electron densities are also given. It is shown that the dominant transitions are those for which ΔJ= 0, ±1, as predicted by the dipolar Born approximation. However, a pure Born treatment is found to overestimate the cross-sections close to threshold energies and to neglect important (dipole forbidden) transitions, owing to the importance of short-range and threshold effects. In the context of cometary water, the contribution of electron collisions might explain the need for large H2O–H2O collisional excitation rates in population models that neglect electrons.
doi_str_mv 10.1111/j.1365-2966.2004.07209.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28197193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1365-2966.2004.07209.x</oup_id><sourcerecordid>28197193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5709-e1c690b666252353e364d7f85f0e0d8d1ca1d0549b3150bbb272fa972d2786843</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhoMoOKf_oTd615qPJmkuvJA5N2VT_ALxJqRpCp1dM5OOdf_e1sq8UTA3ySHPc87hBSBAMELtOV9EiDAaYsFYhCGMI8gxFFGzBwa7j30wgJDQMOEIHYIj7xewJQlmAxCNS6NrZ6uwWK6UrgNna1UXtlJlYBpd9EVg82CjauOOwUGuSm9Ovu8heLkeP4-m4ex-cjO6nIWacihCgzQTMGWMYYoJJYawOON5QnNoYJZkSCuUQRqLlCAK0zTFHOdKcJxhnrAkJkNw1vddOfuxNr6Wy8JrU5aqMnbtJU6Q4EiQFkx6UDvrvTO5XLliqdxWIii7gORCdjnILgfZBSS_ApJNq55-z1BeqzJ3qtKF__EpRTHmqOUuem5TlGb77_5yfvfYvVqf9L5dr_6ww9-2C3ur8LVpdp5y75Jxwqmcvr7JBzKf3D6JK8nIJ05zlZE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28197193</pqid></control><display><type>article</type><title>Electron-impact rotational excitation of water</title><source>Open Access: Oxford University Press Open Journals</source><source>EZB Electronic Journals Library</source><creator>Faure, Alexandre ; Gorfinkiel, Jimena D. ; Tennyson, Jonathan</creator><creatorcontrib>Faure, Alexandre ; Gorfinkiel, Jimena D. ; Tennyson, Jonathan</creatorcontrib><description>Rotational excitation of H2O, HDO and D2O by thermal electron impact is studied using the molecular R-matrix method. Rate coefficients are obtained up to electron temperatures of 8000 K. De-excitation rates and critical electron densities are also given. It is shown that the dominant transitions are those for which ΔJ= 0, ±1, as predicted by the dipolar Born approximation. However, a pure Born treatment is found to overestimate the cross-sections close to threshold energies and to neglect important (dipole forbidden) transitions, owing to the importance of short-range and threshold effects. In the context of cometary water, the contribution of electron collisions might explain the need for large H2O–H2O collisional excitation rates in population models that neglect electrons.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1111/j.1365-2966.2004.07209.x</identifier><identifier>CODEN: MNRAA4</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>ISM: molecules ; molecular data ; molecular processes</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2004-01, Vol.347 (1), p.323-333</ispartof><rights>2004 RAS 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5709-e1c690b666252353e364d7f85f0e0d8d1ca1d0549b3150bbb272fa972d2786843</citedby><cites>FETCH-LOGICAL-c5709-e1c690b666252353e364d7f85f0e0d8d1ca1d0549b3150bbb272fa972d2786843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15514271$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Faure, Alexandre</creatorcontrib><creatorcontrib>Gorfinkiel, Jimena D.</creatorcontrib><creatorcontrib>Tennyson, Jonathan</creatorcontrib><title>Electron-impact rotational excitation of water</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Mon. Not. R. Astron. Soc</addtitle><addtitle>Mon. Not. R. Astron. Soc</addtitle><description>Rotational excitation of H2O, HDO and D2O by thermal electron impact is studied using the molecular R-matrix method. Rate coefficients are obtained up to electron temperatures of 8000 K. De-excitation rates and critical electron densities are also given. It is shown that the dominant transitions are those for which ΔJ= 0, ±1, as predicted by the dipolar Born approximation. However, a pure Born treatment is found to overestimate the cross-sections close to threshold energies and to neglect important (dipole forbidden) transitions, owing to the importance of short-range and threshold effects. In the context of cometary water, the contribution of electron collisions might explain the need for large H2O–H2O collisional excitation rates in population models that neglect electrons.</description><subject>ISM: molecules</subject><subject>molecular data</subject><subject>molecular processes</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkF1LwzAUhoMoOKf_oTd615qPJmkuvJA5N2VT_ALxJqRpCp1dM5OOdf_e1sq8UTA3ySHPc87hBSBAMELtOV9EiDAaYsFYhCGMI8gxFFGzBwa7j30wgJDQMOEIHYIj7xewJQlmAxCNS6NrZ6uwWK6UrgNna1UXtlJlYBpd9EVg82CjauOOwUGuSm9Ovu8heLkeP4-m4ex-cjO6nIWacihCgzQTMGWMYYoJJYawOON5QnNoYJZkSCuUQRqLlCAK0zTFHOdKcJxhnrAkJkNw1vddOfuxNr6Wy8JrU5aqMnbtJU6Q4EiQFkx6UDvrvTO5XLliqdxWIii7gORCdjnILgfZBSS_ApJNq55-z1BeqzJ3qtKF__EpRTHmqOUuem5TlGb77_5yfvfYvVqf9L5dr_6ww9-2C3ur8LVpdp5y75Jxwqmcvr7JBzKf3D6JK8nIJ05zlZE</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Faure, Alexandre</creator><creator>Gorfinkiel, Jimena D.</creator><creator>Tennyson, Jonathan</creator><general>Blackwell Science Ltd</general><general>Blackwell Science</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20040101</creationdate><title>Electron-impact rotational excitation of water</title><author>Faure, Alexandre ; Gorfinkiel, Jimena D. ; Tennyson, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5709-e1c690b666252353e364d7f85f0e0d8d1ca1d0549b3150bbb272fa972d2786843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>ISM: molecules</topic><topic>molecular data</topic><topic>molecular processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faure, Alexandre</creatorcontrib><creatorcontrib>Gorfinkiel, Jimena D.</creatorcontrib><creatorcontrib>Tennyson, Jonathan</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faure, Alexandre</au><au>Gorfinkiel, Jimena D.</au><au>Tennyson, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron-impact rotational excitation of water</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Mon. Not. R. Astron. Soc</stitle><addtitle>Mon. Not. R. Astron. Soc</addtitle><date>2004-01-01</date><risdate>2004</risdate><volume>347</volume><issue>1</issue><spage>323</spage><epage>333</epage><pages>323-333</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><coden>MNRAA4</coden><abstract>Rotational excitation of H2O, HDO and D2O by thermal electron impact is studied using the molecular R-matrix method. Rate coefficients are obtained up to electron temperatures of 8000 K. De-excitation rates and critical electron densities are also given. It is shown that the dominant transitions are those for which ΔJ= 0, ±1, as predicted by the dipolar Born approximation. However, a pure Born treatment is found to overestimate the cross-sections close to threshold energies and to neglect important (dipole forbidden) transitions, owing to the importance of short-range and threshold effects. In the context of cometary water, the contribution of electron collisions might explain the need for large H2O–H2O collisional excitation rates in population models that neglect electrons.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><doi>10.1111/j.1365-2966.2004.07209.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2004-01, Vol.347 (1), p.323-333
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_miscellaneous_28197193
source Open Access: Oxford University Press Open Journals; EZB Electronic Journals Library
subjects ISM: molecules
molecular data
molecular processes
title Electron-impact rotational excitation of water
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A55%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron-impact%20rotational%20excitation%20of%20water&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Faure,%20Alexandre&rft.date=2004-01-01&rft.volume=347&rft.issue=1&rft.spage=323&rft.epage=333&rft.pages=323-333&rft.issn=0035-8711&rft.eissn=1365-2966&rft.coden=MNRAA4&rft_id=info:doi/10.1111/j.1365-2966.2004.07209.x&rft_dat=%3Cproquest_cross%3E28197193%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5709-e1c690b666252353e364d7f85f0e0d8d1ca1d0549b3150bbb272fa972d2786843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28197193&rft_id=info:pmid/&rft_oup_id=10.1111/j.1365-2966.2004.07209.x&rfr_iscdi=true