Loading…

Tailoring Oxygen Reduction Reaction Kinetics on Perovskite Oxides via Oxygen Vacancies for Low‐Temperature and Knittable Zinc–Air Batteries

High kinetics oxygen reduction reaction (ORR) electrocatalysts under low temperature are critical and highly desired for temperature‐tolerant energy conversion and storage devices, but remain insufficiently investigated. Herein, oxygen vacancy‐rich porous perovskite oxide (CaMnO3) nanofibers coated...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2023-09, Vol.35 (36), p.e2303109-n/a
Main Authors: Huang, Hongjiao, Huang, Aoming, Liu, Di, Han, Wentao, Kuo, Chun‐Han, Chen, Han‐Yi, Li, Linlin, Pan, Hui, Peng, Shengjie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3739-fb98c657442b722046ea46679849ea0b7cd7a7590962346df837bfc81d5e17ce3
cites cdi_FETCH-LOGICAL-c3739-fb98c657442b722046ea46679849ea0b7cd7a7590962346df837bfc81d5e17ce3
container_end_page n/a
container_issue 36
container_start_page e2303109
container_title Advanced materials (Weinheim)
container_volume 35
creator Huang, Hongjiao
Huang, Aoming
Liu, Di
Han, Wentao
Kuo, Chun‐Han
Chen, Han‐Yi
Li, Linlin
Pan, Hui
Peng, Shengjie
description High kinetics oxygen reduction reaction (ORR) electrocatalysts under low temperature are critical and highly desired for temperature‐tolerant energy conversion and storage devices, but remain insufficiently investigated. Herein, oxygen vacancy‐rich porous perovskite oxide (CaMnO3) nanofibers coated with reduced graphene oxide coating (V‐CMO/rGO) are developed as the air electrode catalyst for low‐temperature and knittable Zn–air batteries. V‐CMO/rGO exhibits top‐level ORR activity among perovskite oxides and shows impressive kinetics under low temperature. Experimental and theoretical calculation results reveal that the synergistic effect between metal atoms and oxygen vacancies, as well as the accelerated kinetics and enhanced electric conductivity and mass transfer over the rGO coated nanofiber 3D network contribute to the enhanced catalytic activity. The desorption of ORR intermediate is promoted by the regulated electron filling. The V‐CMO/rGO drives knittable and flexible Zn–air batteries under a low temperature of −40 °C with high peak power density of 56 mW cm−2 and long cycle life of over 80 h. This study provides insight of kinetically active catalyst and facilitates the ZABs application in harsh environment. The oxygen reduction reaction kinetics of a perovskite oxide is significantly promoted by a facile metal–vacancy strategy. The newly developed vacancy‐rich porous perovskite nanofibers exhibit comparable activities to the commercial Pt/C and even surpass it under low temperature. The developed catalyst can drive knittable fibrous‐type and sandwich‐type zinc–air batteries under low temperature of −40 °C with impressive performance.
doi_str_mv 10.1002/adma.202303109
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2820971727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861598605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3739-fb98c657442b722046ea46679849ea0b7cd7a7590962346df837bfc81d5e17ce3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS1ERYfCliWyxIZNBv_FjpdD-VWnaoUGFmwix7mpXBJnajsts-sbgMQb9knwaNoidcPqHl195-heHYReUDKnhLA3ph3MnBHGCadEP0IzWjJaCKLLx2hGNC8LLUW1j57GeE4I0ZLIJ2ifKyaUpHSGfq2M68fg_Bk--bk5A4-_QDvZ5MatMjtx5DwkZyPO-hTCeBl_uATZ4FqI-NKZO-83Y423Li-7MeDleHVz_XsFwxqCSVMAbHyLj7xLyTQ94O_O25vrPwsX8FuTEoRsfIb2OtNHeH47D9DXD-9Xh5-K5cnHz4eLZWG54rroGl1ZWSohWKMYI0KCEVIqXQkNhjTKtsqoUueHGRey7Squms5WtC2BKgv8AL3e5a7DeDFBTPXgooW-Nx7GKdasYkQrqpjK6KsH6Pk4BZ-vy5Skpa4kKTM131E2jDEG6Op1cIMJm5qSeltVva2qvq8qG17exk7NAO09ftdNBvQOuHI9bP4TVy_eHS_-hf8FVduizw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861598605</pqid></control><display><type>article</type><title>Tailoring Oxygen Reduction Reaction Kinetics on Perovskite Oxides via Oxygen Vacancies for Low‐Temperature and Knittable Zinc–Air Batteries</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Huang, Hongjiao ; Huang, Aoming ; Liu, Di ; Han, Wentao ; Kuo, Chun‐Han ; Chen, Han‐Yi ; Li, Linlin ; Pan, Hui ; Peng, Shengjie</creator><creatorcontrib>Huang, Hongjiao ; Huang, Aoming ; Liu, Di ; Han, Wentao ; Kuo, Chun‐Han ; Chen, Han‐Yi ; Li, Linlin ; Pan, Hui ; Peng, Shengjie</creatorcontrib><description>High kinetics oxygen reduction reaction (ORR) electrocatalysts under low temperature are critical and highly desired for temperature‐tolerant energy conversion and storage devices, but remain insufficiently investigated. Herein, oxygen vacancy‐rich porous perovskite oxide (CaMnO3) nanofibers coated with reduced graphene oxide coating (V‐CMO/rGO) are developed as the air electrode catalyst for low‐temperature and knittable Zn–air batteries. V‐CMO/rGO exhibits top‐level ORR activity among perovskite oxides and shows impressive kinetics under low temperature. Experimental and theoretical calculation results reveal that the synergistic effect between metal atoms and oxygen vacancies, as well as the accelerated kinetics and enhanced electric conductivity and mass transfer over the rGO coated nanofiber 3D network contribute to the enhanced catalytic activity. The desorption of ORR intermediate is promoted by the regulated electron filling. The V‐CMO/rGO drives knittable and flexible Zn–air batteries under a low temperature of −40 °C with high peak power density of 56 mW cm−2 and long cycle life of over 80 h. This study provides insight of kinetically active catalyst and facilitates the ZABs application in harsh environment. The oxygen reduction reaction kinetics of a perovskite oxide is significantly promoted by a facile metal–vacancy strategy. The newly developed vacancy‐rich porous perovskite nanofibers exhibit comparable activities to the commercial Pt/C and even surpass it under low temperature. The developed catalyst can drive knittable fibrous‐type and sandwich‐type zinc–air batteries under low temperature of −40 °C with impressive performance.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202303109</identifier><identifier>PMID: 37247611</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Catalysts ; Catalytic activity ; Chemical reduction ; Electrical resistivity ; Electrocatalysts ; Energy conversion ; Energy storage ; Graphene ; Low temperature ; Mass transfer ; Materials science ; Metal air batteries ; Nanofibers ; Oxide coatings ; oxides ; oxygen reduction reaction ; Oxygen reduction reactions ; Perovskites ; Reaction kinetics ; Synergistic effect ; vacancies ; Zinc-oxygen batteries ; zinc–air batteries</subject><ispartof>Advanced materials (Weinheim), 2023-09, Vol.35 (36), p.e2303109-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3739-fb98c657442b722046ea46679849ea0b7cd7a7590962346df837bfc81d5e17ce3</citedby><cites>FETCH-LOGICAL-c3739-fb98c657442b722046ea46679849ea0b7cd7a7590962346df837bfc81d5e17ce3</cites><orcidid>0000-0003-1591-1301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37247611$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Hongjiao</creatorcontrib><creatorcontrib>Huang, Aoming</creatorcontrib><creatorcontrib>Liu, Di</creatorcontrib><creatorcontrib>Han, Wentao</creatorcontrib><creatorcontrib>Kuo, Chun‐Han</creatorcontrib><creatorcontrib>Chen, Han‐Yi</creatorcontrib><creatorcontrib>Li, Linlin</creatorcontrib><creatorcontrib>Pan, Hui</creatorcontrib><creatorcontrib>Peng, Shengjie</creatorcontrib><title>Tailoring Oxygen Reduction Reaction Kinetics on Perovskite Oxides via Oxygen Vacancies for Low‐Temperature and Knittable Zinc–Air Batteries</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>High kinetics oxygen reduction reaction (ORR) electrocatalysts under low temperature are critical and highly desired for temperature‐tolerant energy conversion and storage devices, but remain insufficiently investigated. Herein, oxygen vacancy‐rich porous perovskite oxide (CaMnO3) nanofibers coated with reduced graphene oxide coating (V‐CMO/rGO) are developed as the air electrode catalyst for low‐temperature and knittable Zn–air batteries. V‐CMO/rGO exhibits top‐level ORR activity among perovskite oxides and shows impressive kinetics under low temperature. Experimental and theoretical calculation results reveal that the synergistic effect between metal atoms and oxygen vacancies, as well as the accelerated kinetics and enhanced electric conductivity and mass transfer over the rGO coated nanofiber 3D network contribute to the enhanced catalytic activity. The desorption of ORR intermediate is promoted by the regulated electron filling. The V‐CMO/rGO drives knittable and flexible Zn–air batteries under a low temperature of −40 °C with high peak power density of 56 mW cm−2 and long cycle life of over 80 h. This study provides insight of kinetically active catalyst and facilitates the ZABs application in harsh environment. The oxygen reduction reaction kinetics of a perovskite oxide is significantly promoted by a facile metal–vacancy strategy. The newly developed vacancy‐rich porous perovskite nanofibers exhibit comparable activities to the commercial Pt/C and even surpass it under low temperature. The developed catalyst can drive knittable fibrous‐type and sandwich‐type zinc–air batteries under low temperature of −40 °C with impressive performance.</description><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical reduction</subject><subject>Electrical resistivity</subject><subject>Electrocatalysts</subject><subject>Energy conversion</subject><subject>Energy storage</subject><subject>Graphene</subject><subject>Low temperature</subject><subject>Mass transfer</subject><subject>Materials science</subject><subject>Metal air batteries</subject><subject>Nanofibers</subject><subject>Oxide coatings</subject><subject>oxides</subject><subject>oxygen reduction reaction</subject><subject>Oxygen reduction reactions</subject><subject>Perovskites</subject><subject>Reaction kinetics</subject><subject>Synergistic effect</subject><subject>vacancies</subject><subject>Zinc-oxygen batteries</subject><subject>zinc–air batteries</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhS1ERYfCliWyxIZNBv_FjpdD-VWnaoUGFmwix7mpXBJnajsts-sbgMQb9knwaNoidcPqHl195-heHYReUDKnhLA3ph3MnBHGCadEP0IzWjJaCKLLx2hGNC8LLUW1j57GeE4I0ZLIJ2ifKyaUpHSGfq2M68fg_Bk--bk5A4-_QDvZ5MatMjtx5DwkZyPO-hTCeBl_uATZ4FqI-NKZO-83Y423Li-7MeDleHVz_XsFwxqCSVMAbHyLj7xLyTQ94O_O25vrPwsX8FuTEoRsfIb2OtNHeH47D9DXD-9Xh5-K5cnHz4eLZWG54rroGl1ZWSohWKMYI0KCEVIqXQkNhjTKtsqoUueHGRey7Squms5WtC2BKgv8AL3e5a7DeDFBTPXgooW-Nx7GKdasYkQrqpjK6KsH6Pk4BZ-vy5Skpa4kKTM131E2jDEG6Op1cIMJm5qSeltVva2qvq8qG17exk7NAO09ftdNBvQOuHI9bP4TVy_eHS_-hf8FVduizw</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Huang, Hongjiao</creator><creator>Huang, Aoming</creator><creator>Liu, Di</creator><creator>Han, Wentao</creator><creator>Kuo, Chun‐Han</creator><creator>Chen, Han‐Yi</creator><creator>Li, Linlin</creator><creator>Pan, Hui</creator><creator>Peng, Shengjie</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1591-1301</orcidid></search><sort><creationdate>20230901</creationdate><title>Tailoring Oxygen Reduction Reaction Kinetics on Perovskite Oxides via Oxygen Vacancies for Low‐Temperature and Knittable Zinc–Air Batteries</title><author>Huang, Hongjiao ; Huang, Aoming ; Liu, Di ; Han, Wentao ; Kuo, Chun‐Han ; Chen, Han‐Yi ; Li, Linlin ; Pan, Hui ; Peng, Shengjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3739-fb98c657442b722046ea46679849ea0b7cd7a7590962346df837bfc81d5e17ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical reduction</topic><topic>Electrical resistivity</topic><topic>Electrocatalysts</topic><topic>Energy conversion</topic><topic>Energy storage</topic><topic>Graphene</topic><topic>Low temperature</topic><topic>Mass transfer</topic><topic>Materials science</topic><topic>Metal air batteries</topic><topic>Nanofibers</topic><topic>Oxide coatings</topic><topic>oxides</topic><topic>oxygen reduction reaction</topic><topic>Oxygen reduction reactions</topic><topic>Perovskites</topic><topic>Reaction kinetics</topic><topic>Synergistic effect</topic><topic>vacancies</topic><topic>Zinc-oxygen batteries</topic><topic>zinc–air batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hongjiao</creatorcontrib><creatorcontrib>Huang, Aoming</creatorcontrib><creatorcontrib>Liu, Di</creatorcontrib><creatorcontrib>Han, Wentao</creatorcontrib><creatorcontrib>Kuo, Chun‐Han</creatorcontrib><creatorcontrib>Chen, Han‐Yi</creatorcontrib><creatorcontrib>Li, Linlin</creatorcontrib><creatorcontrib>Pan, Hui</creatorcontrib><creatorcontrib>Peng, Shengjie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hongjiao</au><au>Huang, Aoming</au><au>Liu, Di</au><au>Han, Wentao</au><au>Kuo, Chun‐Han</au><au>Chen, Han‐Yi</au><au>Li, Linlin</au><au>Pan, Hui</au><au>Peng, Shengjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring Oxygen Reduction Reaction Kinetics on Perovskite Oxides via Oxygen Vacancies for Low‐Temperature and Knittable Zinc–Air Batteries</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>35</volume><issue>36</issue><spage>e2303109</spage><epage>n/a</epage><pages>e2303109-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>High kinetics oxygen reduction reaction (ORR) electrocatalysts under low temperature are critical and highly desired for temperature‐tolerant energy conversion and storage devices, but remain insufficiently investigated. Herein, oxygen vacancy‐rich porous perovskite oxide (CaMnO3) nanofibers coated with reduced graphene oxide coating (V‐CMO/rGO) are developed as the air electrode catalyst for low‐temperature and knittable Zn–air batteries. V‐CMO/rGO exhibits top‐level ORR activity among perovskite oxides and shows impressive kinetics under low temperature. Experimental and theoretical calculation results reveal that the synergistic effect between metal atoms and oxygen vacancies, as well as the accelerated kinetics and enhanced electric conductivity and mass transfer over the rGO coated nanofiber 3D network contribute to the enhanced catalytic activity. The desorption of ORR intermediate is promoted by the regulated electron filling. The V‐CMO/rGO drives knittable and flexible Zn–air batteries under a low temperature of −40 °C with high peak power density of 56 mW cm−2 and long cycle life of over 80 h. This study provides insight of kinetically active catalyst and facilitates the ZABs application in harsh environment. The oxygen reduction reaction kinetics of a perovskite oxide is significantly promoted by a facile metal–vacancy strategy. The newly developed vacancy‐rich porous perovskite nanofibers exhibit comparable activities to the commercial Pt/C and even surpass it under low temperature. The developed catalyst can drive knittable fibrous‐type and sandwich‐type zinc–air batteries under low temperature of −40 °C with impressive performance.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37247611</pmid><doi>10.1002/adma.202303109</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1591-1301</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-09, Vol.35 (36), p.e2303109-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2820971727
source Wiley-Blackwell Read & Publish Collection
subjects Catalysts
Catalytic activity
Chemical reduction
Electrical resistivity
Electrocatalysts
Energy conversion
Energy storage
Graphene
Low temperature
Mass transfer
Materials science
Metal air batteries
Nanofibers
Oxide coatings
oxides
oxygen reduction reaction
Oxygen reduction reactions
Perovskites
Reaction kinetics
Synergistic effect
vacancies
Zinc-oxygen batteries
zinc–air batteries
title Tailoring Oxygen Reduction Reaction Kinetics on Perovskite Oxides via Oxygen Vacancies for Low‐Temperature and Knittable Zinc–Air Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T04%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20Oxygen%20Reduction%20Reaction%20Kinetics%20on%20Perovskite%20Oxides%20via%20Oxygen%20Vacancies%20for%20Low%E2%80%90Temperature%20and%20Knittable%20Zinc%E2%80%93Air%20Batteries&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Huang,%20Hongjiao&rft.date=2023-09-01&rft.volume=35&rft.issue=36&rft.spage=e2303109&rft.epage=n/a&rft.pages=e2303109-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202303109&rft_dat=%3Cproquest_cross%3E2861598605%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3739-fb98c657442b722046ea46679849ea0b7cd7a7590962346df837bfc81d5e17ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2861598605&rft_id=info:pmid/37247611&rfr_iscdi=true