Loading…

Characterization of well-posedness of piecewise-linear systems

One of the basic issues in the study of hybrid systems is the well-posedness (existence and uniqueness of solutions) problem of discontinuous dynamical systems. The paper addresses this problem for a class of piecewise-linear discontinuous systems under the definition of solutions of Caratheodory. T...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 2000-09, Vol.45 (9), p.1600-1619
Main Authors: Imura, J., van der Schaft, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-1757a3ceb0fe11ad3a1bc59af94653f9452bba5e6dd0ba2bcc784868e7ca66583
cites cdi_FETCH-LOGICAL-c443t-1757a3ceb0fe11ad3a1bc59af94653f9452bba5e6dd0ba2bcc784868e7ca66583
container_end_page 1619
container_issue 9
container_start_page 1600
container_title IEEE transactions on automatic control
container_volume 45
creator Imura, J.
van der Schaft, A.
description One of the basic issues in the study of hybrid systems is the well-posedness (existence and uniqueness of solutions) problem of discontinuous dynamical systems. The paper addresses this problem for a class of piecewise-linear discontinuous systems under the definition of solutions of Caratheodory. The concepts of jump solutions or of sliding modes are not considered here. In this sense, the problem to be discussed is one of the most basic problems in the study of well-posedness for discontinuous dynamical systems. First, we derive necessary and sufficient conditions for bimodal systems to be well-posed, in terms of an analysis based on lexicographic inequalities and the smooth continuation property of solutions. Next, its extensions to the multimodal case are discussed. As an application to switching control, in the case that two state feedback gains are switched according to a criterion depending on the state, we give a characterization of all admissible state feedback gains for which the closed loop system remains well-posed.
doi_str_mv 10.1109/9.880612
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_28212052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>880612</ieee_id><sourcerecordid>28212052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-1757a3ceb0fe11ad3a1bc59af94653f9452bba5e6dd0ba2bcc784868e7ca66583</originalsourceid><addsrcrecordid>eNqN0c1LwzAUAPAgCs4pePY0PKiXzrykSZOLIMMvGHjRc0jTV8zo2pl0jPnXm9HhwYN4ScjLj8f7IOQc6BSA6ls9VYpKYAdkBEKojAnGD8mIUlCZZkoek5MYF-kp8xxG5G72YYN1PQb_ZXvftZOunmywabJVF7FqMcZdZOXR4cZHzBrfog2TuI09LuMpOaptE_Fsf4_J--PD2-w5m78-vczu55nLc95nUIjCcoclrRHAVtxC6YS2tc6l4OkUrCytQFlVtLSsdK5QuZIKC2elFIqPyfWQdxW6zzXG3ix9dKlM22K3jkZDSqSYpkle_SmZUlwzyP8BGTCapjcml7_goluHNrVrVKqSM6WLhG4G5EIXY8DarIJf2rA1QM1uMUabYTGJXgzUI-IP239-A947h4Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884832897</pqid></control><display><type>article</type><title>Characterization of well-posedness of piecewise-linear systems</title><source>IEEE Xplore (Online service)</source><creator>Imura, J. ; van der Schaft, A.</creator><creatorcontrib>Imura, J. ; van der Schaft, A.</creatorcontrib><description>One of the basic issues in the study of hybrid systems is the well-posedness (existence and uniqueness of solutions) problem of discontinuous dynamical systems. The paper addresses this problem for a class of piecewise-linear discontinuous systems under the definition of solutions of Caratheodory. The concepts of jump solutions or of sliding modes are not considered here. In this sense, the problem to be discussed is one of the most basic problems in the study of well-posedness for discontinuous dynamical systems. First, we derive necessary and sufficient conditions for bimodal systems to be well-posed, in terms of an analysis based on lexicographic inequalities and the smooth continuation property of solutions. Next, its extensions to the multimodal case are discussed. As an application to switching control, in the case that two state feedback gains are switched according to a criterion depending on the state, we give a characterization of all admissible state feedback gains for which the closed loop system remains well-posed.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.880612</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automata ; Automatic control ; Computer science ; Control system synthesis ; Control systems ; Controllability ; Dynamical systems ; Dynamics ; Gain ; Inequalities ; Piecewise linear techniques ; Stability ; State feedback ; Studies ; Sufficient conditions ; Switching ; Well posed problems</subject><ispartof>IEEE transactions on automatic control, 2000-09, Vol.45 (9), p.1600-1619</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-1757a3ceb0fe11ad3a1bc59af94653f9452bba5e6dd0ba2bcc784868e7ca66583</citedby><cites>FETCH-LOGICAL-c443t-1757a3ceb0fe11ad3a1bc59af94653f9452bba5e6dd0ba2bcc784868e7ca66583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/880612$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Imura, J.</creatorcontrib><creatorcontrib>van der Schaft, A.</creatorcontrib><title>Characterization of well-posedness of piecewise-linear systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>One of the basic issues in the study of hybrid systems is the well-posedness (existence and uniqueness of solutions) problem of discontinuous dynamical systems. The paper addresses this problem for a class of piecewise-linear discontinuous systems under the definition of solutions of Caratheodory. The concepts of jump solutions or of sliding modes are not considered here. In this sense, the problem to be discussed is one of the most basic problems in the study of well-posedness for discontinuous dynamical systems. First, we derive necessary and sufficient conditions for bimodal systems to be well-posed, in terms of an analysis based on lexicographic inequalities and the smooth continuation property of solutions. Next, its extensions to the multimodal case are discussed. As an application to switching control, in the case that two state feedback gains are switched according to a criterion depending on the state, we give a characterization of all admissible state feedback gains for which the closed loop system remains well-posed.</description><subject>Automata</subject><subject>Automatic control</subject><subject>Computer science</subject><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Controllability</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Gain</subject><subject>Inequalities</subject><subject>Piecewise linear techniques</subject><subject>Stability</subject><subject>State feedback</subject><subject>Studies</subject><subject>Sufficient conditions</subject><subject>Switching</subject><subject>Well posed problems</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqN0c1LwzAUAPAgCs4pePY0PKiXzrykSZOLIMMvGHjRc0jTV8zo2pl0jPnXm9HhwYN4ScjLj8f7IOQc6BSA6ls9VYpKYAdkBEKojAnGD8mIUlCZZkoek5MYF-kp8xxG5G72YYN1PQb_ZXvftZOunmywabJVF7FqMcZdZOXR4cZHzBrfog2TuI09LuMpOaptE_Fsf4_J--PD2-w5m78-vczu55nLc95nUIjCcoclrRHAVtxC6YS2tc6l4OkUrCytQFlVtLSsdK5QuZIKC2elFIqPyfWQdxW6zzXG3ix9dKlM22K3jkZDSqSYpkle_SmZUlwzyP8BGTCapjcml7_goluHNrVrVKqSM6WLhG4G5EIXY8DarIJf2rA1QM1uMUabYTGJXgzUI-IP239-A947h4Y</recordid><startdate>20000901</startdate><enddate>20000901</enddate><creator>Imura, J.</creator><creator>van der Schaft, A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope><scope>F28</scope></search><sort><creationdate>20000901</creationdate><title>Characterization of well-posedness of piecewise-linear systems</title><author>Imura, J. ; van der Schaft, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-1757a3ceb0fe11ad3a1bc59af94653f9452bba5e6dd0ba2bcc784868e7ca66583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Automata</topic><topic>Automatic control</topic><topic>Computer science</topic><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Controllability</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Gain</topic><topic>Inequalities</topic><topic>Piecewise linear techniques</topic><topic>Stability</topic><topic>State feedback</topic><topic>Studies</topic><topic>Sufficient conditions</topic><topic>Switching</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imura, J.</creatorcontrib><creatorcontrib>van der Schaft, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imura, J.</au><au>van der Schaft, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of well-posedness of piecewise-linear systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2000-09-01</date><risdate>2000</risdate><volume>45</volume><issue>9</issue><spage>1600</spage><epage>1619</epage><pages>1600-1619</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>One of the basic issues in the study of hybrid systems is the well-posedness (existence and uniqueness of solutions) problem of discontinuous dynamical systems. The paper addresses this problem for a class of piecewise-linear discontinuous systems under the definition of solutions of Caratheodory. The concepts of jump solutions or of sliding modes are not considered here. In this sense, the problem to be discussed is one of the most basic problems in the study of well-posedness for discontinuous dynamical systems. First, we derive necessary and sufficient conditions for bimodal systems to be well-posed, in terms of an analysis based on lexicographic inequalities and the smooth continuation property of solutions. Next, its extensions to the multimodal case are discussed. As an application to switching control, in the case that two state feedback gains are switched according to a criterion depending on the state, we give a characterization of all admissible state feedback gains for which the closed loop system remains well-posed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/9.880612</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2000-09, Vol.45 (9), p.1600-1619
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_miscellaneous_28212052
source IEEE Xplore (Online service)
subjects Automata
Automatic control
Computer science
Control system synthesis
Control systems
Controllability
Dynamical systems
Dynamics
Gain
Inequalities
Piecewise linear techniques
Stability
State feedback
Studies
Sufficient conditions
Switching
Well posed problems
title Characterization of well-posedness of piecewise-linear systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20well-posedness%20of%20piecewise-linear%20systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Imura,%20J.&rft.date=2000-09-01&rft.volume=45&rft.issue=9&rft.spage=1600&rft.epage=1619&rft.pages=1600-1619&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.880612&rft_dat=%3Cproquest_ieee_%3E28212052%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-1757a3ceb0fe11ad3a1bc59af94653f9452bba5e6dd0ba2bcc784868e7ca66583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884832897&rft_id=info:pmid/&rft_ieee_id=880612&rfr_iscdi=true