Loading…
Characterization of well-posedness of piecewise-linear systems
One of the basic issues in the study of hybrid systems is the well-posedness (existence and uniqueness of solutions) problem of discontinuous dynamical systems. The paper addresses this problem for a class of piecewise-linear discontinuous systems under the definition of solutions of Caratheodory. T...
Saved in:
Published in: | IEEE transactions on automatic control 2000-09, Vol.45 (9), p.1600-1619 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c443t-1757a3ceb0fe11ad3a1bc59af94653f9452bba5e6dd0ba2bcc784868e7ca66583 |
---|---|
cites | cdi_FETCH-LOGICAL-c443t-1757a3ceb0fe11ad3a1bc59af94653f9452bba5e6dd0ba2bcc784868e7ca66583 |
container_end_page | 1619 |
container_issue | 9 |
container_start_page | 1600 |
container_title | IEEE transactions on automatic control |
container_volume | 45 |
creator | Imura, J. van der Schaft, A. |
description | One of the basic issues in the study of hybrid systems is the well-posedness (existence and uniqueness of solutions) problem of discontinuous dynamical systems. The paper addresses this problem for a class of piecewise-linear discontinuous systems under the definition of solutions of Caratheodory. The concepts of jump solutions or of sliding modes are not considered here. In this sense, the problem to be discussed is one of the most basic problems in the study of well-posedness for discontinuous dynamical systems. First, we derive necessary and sufficient conditions for bimodal systems to be well-posed, in terms of an analysis based on lexicographic inequalities and the smooth continuation property of solutions. Next, its extensions to the multimodal case are discussed. As an application to switching control, in the case that two state feedback gains are switched according to a criterion depending on the state, we give a characterization of all admissible state feedback gains for which the closed loop system remains well-posed. |
doi_str_mv | 10.1109/9.880612 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_28212052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>880612</ieee_id><sourcerecordid>28212052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-1757a3ceb0fe11ad3a1bc59af94653f9452bba5e6dd0ba2bcc784868e7ca66583</originalsourceid><addsrcrecordid>eNqN0c1LwzAUAPAgCs4pePY0PKiXzrykSZOLIMMvGHjRc0jTV8zo2pl0jPnXm9HhwYN4ScjLj8f7IOQc6BSA6ls9VYpKYAdkBEKojAnGD8mIUlCZZkoek5MYF-kp8xxG5G72YYN1PQb_ZXvftZOunmywabJVF7FqMcZdZOXR4cZHzBrfog2TuI09LuMpOaptE_Fsf4_J--PD2-w5m78-vczu55nLc95nUIjCcoclrRHAVtxC6YS2tc6l4OkUrCytQFlVtLSsdK5QuZIKC2elFIqPyfWQdxW6zzXG3ix9dKlM22K3jkZDSqSYpkle_SmZUlwzyP8BGTCapjcml7_goluHNrVrVKqSM6WLhG4G5EIXY8DarIJf2rA1QM1uMUabYTGJXgzUI-IP239-A947h4Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884832897</pqid></control><display><type>article</type><title>Characterization of well-posedness of piecewise-linear systems</title><source>IEEE Xplore (Online service)</source><creator>Imura, J. ; van der Schaft, A.</creator><creatorcontrib>Imura, J. ; van der Schaft, A.</creatorcontrib><description>One of the basic issues in the study of hybrid systems is the well-posedness (existence and uniqueness of solutions) problem of discontinuous dynamical systems. The paper addresses this problem for a class of piecewise-linear discontinuous systems under the definition of solutions of Caratheodory. The concepts of jump solutions or of sliding modes are not considered here. In this sense, the problem to be discussed is one of the most basic problems in the study of well-posedness for discontinuous dynamical systems. First, we derive necessary and sufficient conditions for bimodal systems to be well-posed, in terms of an analysis based on lexicographic inequalities and the smooth continuation property of solutions. Next, its extensions to the multimodal case are discussed. As an application to switching control, in the case that two state feedback gains are switched according to a criterion depending on the state, we give a characterization of all admissible state feedback gains for which the closed loop system remains well-posed.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.880612</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automata ; Automatic control ; Computer science ; Control system synthesis ; Control systems ; Controllability ; Dynamical systems ; Dynamics ; Gain ; Inequalities ; Piecewise linear techniques ; Stability ; State feedback ; Studies ; Sufficient conditions ; Switching ; Well posed problems</subject><ispartof>IEEE transactions on automatic control, 2000-09, Vol.45 (9), p.1600-1619</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-1757a3ceb0fe11ad3a1bc59af94653f9452bba5e6dd0ba2bcc784868e7ca66583</citedby><cites>FETCH-LOGICAL-c443t-1757a3ceb0fe11ad3a1bc59af94653f9452bba5e6dd0ba2bcc784868e7ca66583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/880612$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Imura, J.</creatorcontrib><creatorcontrib>van der Schaft, A.</creatorcontrib><title>Characterization of well-posedness of piecewise-linear systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>One of the basic issues in the study of hybrid systems is the well-posedness (existence and uniqueness of solutions) problem of discontinuous dynamical systems. The paper addresses this problem for a class of piecewise-linear discontinuous systems under the definition of solutions of Caratheodory. The concepts of jump solutions or of sliding modes are not considered here. In this sense, the problem to be discussed is one of the most basic problems in the study of well-posedness for discontinuous dynamical systems. First, we derive necessary and sufficient conditions for bimodal systems to be well-posed, in terms of an analysis based on lexicographic inequalities and the smooth continuation property of solutions. Next, its extensions to the multimodal case are discussed. As an application to switching control, in the case that two state feedback gains are switched according to a criterion depending on the state, we give a characterization of all admissible state feedback gains for which the closed loop system remains well-posed.</description><subject>Automata</subject><subject>Automatic control</subject><subject>Computer science</subject><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Controllability</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Gain</subject><subject>Inequalities</subject><subject>Piecewise linear techniques</subject><subject>Stability</subject><subject>State feedback</subject><subject>Studies</subject><subject>Sufficient conditions</subject><subject>Switching</subject><subject>Well posed problems</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqN0c1LwzAUAPAgCs4pePY0PKiXzrykSZOLIMMvGHjRc0jTV8zo2pl0jPnXm9HhwYN4ScjLj8f7IOQc6BSA6ls9VYpKYAdkBEKojAnGD8mIUlCZZkoek5MYF-kp8xxG5G72YYN1PQb_ZXvftZOunmywabJVF7FqMcZdZOXR4cZHzBrfog2TuI09LuMpOaptE_Fsf4_J--PD2-w5m78-vczu55nLc95nUIjCcoclrRHAVtxC6YS2tc6l4OkUrCytQFlVtLSsdK5QuZIKC2elFIqPyfWQdxW6zzXG3ix9dKlM22K3jkZDSqSYpkle_SmZUlwzyP8BGTCapjcml7_goluHNrVrVKqSM6WLhG4G5EIXY8DarIJf2rA1QM1uMUabYTGJXgzUI-IP239-A947h4Y</recordid><startdate>20000901</startdate><enddate>20000901</enddate><creator>Imura, J.</creator><creator>van der Schaft, A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope><scope>F28</scope></search><sort><creationdate>20000901</creationdate><title>Characterization of well-posedness of piecewise-linear systems</title><author>Imura, J. ; van der Schaft, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-1757a3ceb0fe11ad3a1bc59af94653f9452bba5e6dd0ba2bcc784868e7ca66583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Automata</topic><topic>Automatic control</topic><topic>Computer science</topic><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Controllability</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Gain</topic><topic>Inequalities</topic><topic>Piecewise linear techniques</topic><topic>Stability</topic><topic>State feedback</topic><topic>Studies</topic><topic>Sufficient conditions</topic><topic>Switching</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imura, J.</creatorcontrib><creatorcontrib>van der Schaft, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imura, J.</au><au>van der Schaft, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of well-posedness of piecewise-linear systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2000-09-01</date><risdate>2000</risdate><volume>45</volume><issue>9</issue><spage>1600</spage><epage>1619</epage><pages>1600-1619</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>One of the basic issues in the study of hybrid systems is the well-posedness (existence and uniqueness of solutions) problem of discontinuous dynamical systems. The paper addresses this problem for a class of piecewise-linear discontinuous systems under the definition of solutions of Caratheodory. The concepts of jump solutions or of sliding modes are not considered here. In this sense, the problem to be discussed is one of the most basic problems in the study of well-posedness for discontinuous dynamical systems. First, we derive necessary and sufficient conditions for bimodal systems to be well-posed, in terms of an analysis based on lexicographic inequalities and the smooth continuation property of solutions. Next, its extensions to the multimodal case are discussed. As an application to switching control, in the case that two state feedback gains are switched according to a criterion depending on the state, we give a characterization of all admissible state feedback gains for which the closed loop system remains well-posed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/9.880612</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2000-09, Vol.45 (9), p.1600-1619 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_miscellaneous_28212052 |
source | IEEE Xplore (Online service) |
subjects | Automata Automatic control Computer science Control system synthesis Control systems Controllability Dynamical systems Dynamics Gain Inequalities Piecewise linear techniques Stability State feedback Studies Sufficient conditions Switching Well posed problems |
title | Characterization of well-posedness of piecewise-linear systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20well-posedness%20of%20piecewise-linear%20systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Imura,%20J.&rft.date=2000-09-01&rft.volume=45&rft.issue=9&rft.spage=1600&rft.epage=1619&rft.pages=1600-1619&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.880612&rft_dat=%3Cproquest_ieee_%3E28212052%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-1757a3ceb0fe11ad3a1bc59af94653f9452bba5e6dd0ba2bcc784868e7ca66583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884832897&rft_id=info:pmid/&rft_ieee_id=880612&rfr_iscdi=true |