Loading…
Lithium Azides Induced SnS Quantum Dots for Ultra-Fast and Long-Term Sodium Storage
Tin sulfide (SnS) is an attractive anode for sodium ion batteries (NIBs) because of its high theoretical capacity, while it seriously suffers from the inherently poor conductivity and huge volume variation during the cycling process, leading to inferior lifespan. To intrinsically maximize the sodium...
Saved in:
Published in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-09, Vol.19 (38), p.e2302188-e2302188 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c323t-d4c24dd817e412a549b3cbf578f635af9dfeaef4e07213558d756227d745a11c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c323t-d4c24dd817e412a549b3cbf578f635af9dfeaef4e07213558d756227d745a11c3 |
container_end_page | e2302188 |
container_issue | 38 |
container_start_page | e2302188 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 19 |
creator | Cheng, Qiaohuan Li, Yingxue Gao, Panyu Xia, Guanglin He, Shengnan Yang, Yaxiong Pan, Hongge Yu, Xuebin |
description | Tin sulfide (SnS) is an attractive anode for sodium ion batteries (NIBs) because of its high theoretical capacity, while it seriously suffers from the inherently poor conductivity and huge volume variation during the cycling process, leading to inferior lifespan. To intrinsically maximize the sodium storage of SnS, herein, lithium azides (LiN
)-induced SnS quantum dots (QDs) are first reported using a simple electrospinning strategy, where SnS QDs are uniformly distributed in the carbon fibers. Taking the advantage of LiN
, which can effectively prevent the growth of crystal nuclei during the thermal treatment, the well-dispersed SnS QDs performs superior Na
transfer kinetics and pseudocapacitive when used as an anode material for NIBs. The 3D SnS quantum dots embedded uniformly in N-doped nanofibers (SnS QDs@NCF) electrodes display superior long cycling life-span (484.6 mAh g
after 5800 cycles at 2 A g
and 430.9 mAh g
after 7880 cycles at 10 A g
), as well as excellent rate capability (422.3 mAh g
at 20 A g
). This fabrication of transition metal sulfides QDs composites provide a feasible strategy to develop NIBs with long life-span and superior rate capability to pave its practical implementation. |
doi_str_mv | 10.1002/smll.202302188 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2821639425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821639425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-d4c24dd817e412a549b3cbf578f635af9dfeaef4e07213558d756227d745a11c3</originalsourceid><addsrcrecordid>eNpdkMFLwzAUh4Mobk6vHiXgxUtn8tIk7XGo00FBpNu5ZE06O9pmJulB_3o7Nnfw9B687_fj8SF0S8mUEgKPvm2aKRBgBGiSnKExFZRFIoH0_LRTMkJX3m8JYRRieYlGTAJPQZAxyrM6fNZ9i2c_tTYeLzrdl0bjvMvxR6-6MJyebfC4sg6vmuBUNFc-YNVpnNluEy2Na3Fu9b4jD9apjblGF5VqvLk5zglazV-WT29R9v66eJplUcmAhUjHJcRaJ1SamILicbpm5briMqkE46pKdWWUqWJDJFDGeaIlFwBSy5grSks2QQ-H3p2zX73xoWhrX5qmUZ2xvS8gASpYGgMf0Pt_6Nb2rhu-GyghIB1IMlDTA1U6670zVbFzdavcd0FJsddd7HUXJ91D4O5Y269bo0_4n1_2C4ryeXY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866292160</pqid></control><display><type>article</type><title>Lithium Azides Induced SnS Quantum Dots for Ultra-Fast and Long-Term Sodium Storage</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Cheng, Qiaohuan ; Li, Yingxue ; Gao, Panyu ; Xia, Guanglin ; He, Shengnan ; Yang, Yaxiong ; Pan, Hongge ; Yu, Xuebin</creator><creatorcontrib>Cheng, Qiaohuan ; Li, Yingxue ; Gao, Panyu ; Xia, Guanglin ; He, Shengnan ; Yang, Yaxiong ; Pan, Hongge ; Yu, Xuebin</creatorcontrib><description>Tin sulfide (SnS) is an attractive anode for sodium ion batteries (NIBs) because of its high theoretical capacity, while it seriously suffers from the inherently poor conductivity and huge volume variation during the cycling process, leading to inferior lifespan. To intrinsically maximize the sodium storage of SnS, herein, lithium azides (LiN
)-induced SnS quantum dots (QDs) are first reported using a simple electrospinning strategy, where SnS QDs are uniformly distributed in the carbon fibers. Taking the advantage of LiN
, which can effectively prevent the growth of crystal nuclei during the thermal treatment, the well-dispersed SnS QDs performs superior Na
transfer kinetics and pseudocapacitive when used as an anode material for NIBs. The 3D SnS quantum dots embedded uniformly in N-doped nanofibers (SnS QDs@NCF) electrodes display superior long cycling life-span (484.6 mAh g
after 5800 cycles at 2 A g
and 430.9 mAh g
after 7880 cycles at 10 A g
), as well as excellent rate capability (422.3 mAh g
at 20 A g
). This fabrication of transition metal sulfides QDs composites provide a feasible strategy to develop NIBs with long life-span and superior rate capability to pave its practical implementation.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202302188</identifier><identifier>PMID: 37259260</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Carbon fibers ; Crystal growth ; Cycles ; Electrode materials ; Heat treatment ; Lithium ; Metal sulfides ; Nanotechnology ; Quantum dots ; Sodium ; Sodium-ion batteries ; Transition metals</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-09, Vol.19 (38), p.e2302188-e2302188</ispartof><rights>2023 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-d4c24dd817e412a549b3cbf578f635af9dfeaef4e07213558d756227d745a11c3</citedby><cites>FETCH-LOGICAL-c323t-d4c24dd817e412a549b3cbf578f635af9dfeaef4e07213558d756227d745a11c3</cites><orcidid>0000-0002-4035-0991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37259260$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Qiaohuan</creatorcontrib><creatorcontrib>Li, Yingxue</creatorcontrib><creatorcontrib>Gao, Panyu</creatorcontrib><creatorcontrib>Xia, Guanglin</creatorcontrib><creatorcontrib>He, Shengnan</creatorcontrib><creatorcontrib>Yang, Yaxiong</creatorcontrib><creatorcontrib>Pan, Hongge</creatorcontrib><creatorcontrib>Yu, Xuebin</creatorcontrib><title>Lithium Azides Induced SnS Quantum Dots for Ultra-Fast and Long-Term Sodium Storage</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Tin sulfide (SnS) is an attractive anode for sodium ion batteries (NIBs) because of its high theoretical capacity, while it seriously suffers from the inherently poor conductivity and huge volume variation during the cycling process, leading to inferior lifespan. To intrinsically maximize the sodium storage of SnS, herein, lithium azides (LiN
)-induced SnS quantum dots (QDs) are first reported using a simple electrospinning strategy, where SnS QDs are uniformly distributed in the carbon fibers. Taking the advantage of LiN
, which can effectively prevent the growth of crystal nuclei during the thermal treatment, the well-dispersed SnS QDs performs superior Na
transfer kinetics and pseudocapacitive when used as an anode material for NIBs. The 3D SnS quantum dots embedded uniformly in N-doped nanofibers (SnS QDs@NCF) electrodes display superior long cycling life-span (484.6 mAh g
after 5800 cycles at 2 A g
and 430.9 mAh g
after 7880 cycles at 10 A g
), as well as excellent rate capability (422.3 mAh g
at 20 A g
). This fabrication of transition metal sulfides QDs composites provide a feasible strategy to develop NIBs with long life-span and superior rate capability to pave its practical implementation.</description><subject>Anodes</subject><subject>Carbon fibers</subject><subject>Crystal growth</subject><subject>Cycles</subject><subject>Electrode materials</subject><subject>Heat treatment</subject><subject>Lithium</subject><subject>Metal sulfides</subject><subject>Nanotechnology</subject><subject>Quantum dots</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Transition metals</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkMFLwzAUh4Mobk6vHiXgxUtn8tIk7XGo00FBpNu5ZE06O9pmJulB_3o7Nnfw9B687_fj8SF0S8mUEgKPvm2aKRBgBGiSnKExFZRFIoH0_LRTMkJX3m8JYRRieYlGTAJPQZAxyrM6fNZ9i2c_tTYeLzrdl0bjvMvxR6-6MJyebfC4sg6vmuBUNFc-YNVpnNluEy2Na3Fu9b4jD9apjblGF5VqvLk5zglazV-WT29R9v66eJplUcmAhUjHJcRaJ1SamILicbpm5briMqkE46pKdWWUqWJDJFDGeaIlFwBSy5grSks2QQ-H3p2zX73xoWhrX5qmUZ2xvS8gASpYGgMf0Pt_6Nb2rhu-GyghIB1IMlDTA1U6670zVbFzdavcd0FJsddd7HUXJ91D4O5Y269bo0_4n1_2C4ryeXY</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Cheng, Qiaohuan</creator><creator>Li, Yingxue</creator><creator>Gao, Panyu</creator><creator>Xia, Guanglin</creator><creator>He, Shengnan</creator><creator>Yang, Yaxiong</creator><creator>Pan, Hongge</creator><creator>Yu, Xuebin</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4035-0991</orcidid></search><sort><creationdate>20230901</creationdate><title>Lithium Azides Induced SnS Quantum Dots for Ultra-Fast and Long-Term Sodium Storage</title><author>Cheng, Qiaohuan ; Li, Yingxue ; Gao, Panyu ; Xia, Guanglin ; He, Shengnan ; Yang, Yaxiong ; Pan, Hongge ; Yu, Xuebin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-d4c24dd817e412a549b3cbf578f635af9dfeaef4e07213558d756227d745a11c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anodes</topic><topic>Carbon fibers</topic><topic>Crystal growth</topic><topic>Cycles</topic><topic>Electrode materials</topic><topic>Heat treatment</topic><topic>Lithium</topic><topic>Metal sulfides</topic><topic>Nanotechnology</topic><topic>Quantum dots</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Qiaohuan</creatorcontrib><creatorcontrib>Li, Yingxue</creatorcontrib><creatorcontrib>Gao, Panyu</creatorcontrib><creatorcontrib>Xia, Guanglin</creatorcontrib><creatorcontrib>He, Shengnan</creatorcontrib><creatorcontrib>Yang, Yaxiong</creatorcontrib><creatorcontrib>Pan, Hongge</creatorcontrib><creatorcontrib>Yu, Xuebin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Qiaohuan</au><au>Li, Yingxue</au><au>Gao, Panyu</au><au>Xia, Guanglin</au><au>He, Shengnan</au><au>Yang, Yaxiong</au><au>Pan, Hongge</au><au>Yu, Xuebin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium Azides Induced SnS Quantum Dots for Ultra-Fast and Long-Term Sodium Storage</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>19</volume><issue>38</issue><spage>e2302188</spage><epage>e2302188</epage><pages>e2302188-e2302188</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Tin sulfide (SnS) is an attractive anode for sodium ion batteries (NIBs) because of its high theoretical capacity, while it seriously suffers from the inherently poor conductivity and huge volume variation during the cycling process, leading to inferior lifespan. To intrinsically maximize the sodium storage of SnS, herein, lithium azides (LiN
)-induced SnS quantum dots (QDs) are first reported using a simple electrospinning strategy, where SnS QDs are uniformly distributed in the carbon fibers. Taking the advantage of LiN
, which can effectively prevent the growth of crystal nuclei during the thermal treatment, the well-dispersed SnS QDs performs superior Na
transfer kinetics and pseudocapacitive when used as an anode material for NIBs. The 3D SnS quantum dots embedded uniformly in N-doped nanofibers (SnS QDs@NCF) electrodes display superior long cycling life-span (484.6 mAh g
after 5800 cycles at 2 A g
and 430.9 mAh g
after 7880 cycles at 10 A g
), as well as excellent rate capability (422.3 mAh g
at 20 A g
). This fabrication of transition metal sulfides QDs composites provide a feasible strategy to develop NIBs with long life-span and superior rate capability to pave its practical implementation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37259260</pmid><doi>10.1002/smll.202302188</doi><orcidid>https://orcid.org/0000-0002-4035-0991</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2023-09, Vol.19 (38), p.e2302188-e2302188 |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2821639425 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Anodes Carbon fibers Crystal growth Cycles Electrode materials Heat treatment Lithium Metal sulfides Nanotechnology Quantum dots Sodium Sodium-ion batteries Transition metals |
title | Lithium Azides Induced SnS Quantum Dots for Ultra-Fast and Long-Term Sodium Storage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium%20Azides%20Induced%20SnS%20Quantum%20Dots%20for%20Ultra-Fast%20and%20Long-Term%20Sodium%20Storage&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Cheng,%20Qiaohuan&rft.date=2023-09-01&rft.volume=19&rft.issue=38&rft.spage=e2302188&rft.epage=e2302188&rft.pages=e2302188-e2302188&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202302188&rft_dat=%3Cproquest_cross%3E2821639425%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-d4c24dd817e412a549b3cbf578f635af9dfeaef4e07213558d756227d745a11c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2866292160&rft_id=info:pmid/37259260&rfr_iscdi=true |