Loading…

Lithium Azides Induced SnS Quantum Dots for Ultra-Fast and Long-Term Sodium Storage

Tin sulfide (SnS) is an attractive anode for sodium ion batteries (NIBs) because of its high theoretical capacity, while it seriously suffers from the inherently poor conductivity and huge volume variation during the cycling process, leading to inferior lifespan. To intrinsically maximize the sodium...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-09, Vol.19 (38), p.e2302188-e2302188
Main Authors: Cheng, Qiaohuan, Li, Yingxue, Gao, Panyu, Xia, Guanglin, He, Shengnan, Yang, Yaxiong, Pan, Hongge, Yu, Xuebin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c323t-d4c24dd817e412a549b3cbf578f635af9dfeaef4e07213558d756227d745a11c3
cites cdi_FETCH-LOGICAL-c323t-d4c24dd817e412a549b3cbf578f635af9dfeaef4e07213558d756227d745a11c3
container_end_page e2302188
container_issue 38
container_start_page e2302188
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 19
creator Cheng, Qiaohuan
Li, Yingxue
Gao, Panyu
Xia, Guanglin
He, Shengnan
Yang, Yaxiong
Pan, Hongge
Yu, Xuebin
description Tin sulfide (SnS) is an attractive anode for sodium ion batteries (NIBs) because of its high theoretical capacity, while it seriously suffers from the inherently poor conductivity and huge volume variation during the cycling process, leading to inferior lifespan. To intrinsically maximize the sodium storage of SnS, herein, lithium azides (LiN )-induced SnS quantum dots (QDs) are first reported using a simple electrospinning strategy, where SnS QDs are uniformly distributed in the carbon fibers. Taking the advantage of LiN , which can effectively prevent the growth of crystal nuclei during the thermal treatment, the well-dispersed SnS QDs performs superior Na transfer kinetics and pseudocapacitive when used as an anode material for NIBs. The 3D SnS quantum dots embedded uniformly in N-doped nanofibers (SnS QDs@NCF) electrodes display superior long cycling life-span (484.6 mAh g after 5800 cycles at 2 A g and 430.9 mAh g after 7880 cycles at 10 A g ), as well as excellent rate capability (422.3 mAh g at 20 A g ). This fabrication of transition metal sulfides QDs composites provide a feasible strategy to develop NIBs with long life-span and superior rate capability to pave its practical implementation.
doi_str_mv 10.1002/smll.202302188
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2821639425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821639425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-d4c24dd817e412a549b3cbf578f635af9dfeaef4e07213558d756227d745a11c3</originalsourceid><addsrcrecordid>eNpdkMFLwzAUh4Mobk6vHiXgxUtn8tIk7XGo00FBpNu5ZE06O9pmJulB_3o7Nnfw9B687_fj8SF0S8mUEgKPvm2aKRBgBGiSnKExFZRFIoH0_LRTMkJX3m8JYRRieYlGTAJPQZAxyrM6fNZ9i2c_tTYeLzrdl0bjvMvxR6-6MJyebfC4sg6vmuBUNFc-YNVpnNluEy2Na3Fu9b4jD9apjblGF5VqvLk5zglazV-WT29R9v66eJplUcmAhUjHJcRaJ1SamILicbpm5briMqkE46pKdWWUqWJDJFDGeaIlFwBSy5grSks2QQ-H3p2zX73xoWhrX5qmUZ2xvS8gASpYGgMf0Pt_6Nb2rhu-GyghIB1IMlDTA1U6670zVbFzdavcd0FJsddd7HUXJ91D4O5Y269bo0_4n1_2C4ryeXY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866292160</pqid></control><display><type>article</type><title>Lithium Azides Induced SnS Quantum Dots for Ultra-Fast and Long-Term Sodium Storage</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Cheng, Qiaohuan ; Li, Yingxue ; Gao, Panyu ; Xia, Guanglin ; He, Shengnan ; Yang, Yaxiong ; Pan, Hongge ; Yu, Xuebin</creator><creatorcontrib>Cheng, Qiaohuan ; Li, Yingxue ; Gao, Panyu ; Xia, Guanglin ; He, Shengnan ; Yang, Yaxiong ; Pan, Hongge ; Yu, Xuebin</creatorcontrib><description>Tin sulfide (SnS) is an attractive anode for sodium ion batteries (NIBs) because of its high theoretical capacity, while it seriously suffers from the inherently poor conductivity and huge volume variation during the cycling process, leading to inferior lifespan. To intrinsically maximize the sodium storage of SnS, herein, lithium azides (LiN )-induced SnS quantum dots (QDs) are first reported using a simple electrospinning strategy, where SnS QDs are uniformly distributed in the carbon fibers. Taking the advantage of LiN , which can effectively prevent the growth of crystal nuclei during the thermal treatment, the well-dispersed SnS QDs performs superior Na transfer kinetics and pseudocapacitive when used as an anode material for NIBs. The 3D SnS quantum dots embedded uniformly in N-doped nanofibers (SnS QDs@NCF) electrodes display superior long cycling life-span (484.6 mAh g after 5800 cycles at 2 A g and 430.9 mAh g after 7880 cycles at 10 A g ), as well as excellent rate capability (422.3 mAh g at 20 A g ). This fabrication of transition metal sulfides QDs composites provide a feasible strategy to develop NIBs with long life-span and superior rate capability to pave its practical implementation.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202302188</identifier><identifier>PMID: 37259260</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Carbon fibers ; Crystal growth ; Cycles ; Electrode materials ; Heat treatment ; Lithium ; Metal sulfides ; Nanotechnology ; Quantum dots ; Sodium ; Sodium-ion batteries ; Transition metals</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-09, Vol.19 (38), p.e2302188-e2302188</ispartof><rights>2023 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-d4c24dd817e412a549b3cbf578f635af9dfeaef4e07213558d756227d745a11c3</citedby><cites>FETCH-LOGICAL-c323t-d4c24dd817e412a549b3cbf578f635af9dfeaef4e07213558d756227d745a11c3</cites><orcidid>0000-0002-4035-0991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37259260$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Qiaohuan</creatorcontrib><creatorcontrib>Li, Yingxue</creatorcontrib><creatorcontrib>Gao, Panyu</creatorcontrib><creatorcontrib>Xia, Guanglin</creatorcontrib><creatorcontrib>He, Shengnan</creatorcontrib><creatorcontrib>Yang, Yaxiong</creatorcontrib><creatorcontrib>Pan, Hongge</creatorcontrib><creatorcontrib>Yu, Xuebin</creatorcontrib><title>Lithium Azides Induced SnS Quantum Dots for Ultra-Fast and Long-Term Sodium Storage</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Tin sulfide (SnS) is an attractive anode for sodium ion batteries (NIBs) because of its high theoretical capacity, while it seriously suffers from the inherently poor conductivity and huge volume variation during the cycling process, leading to inferior lifespan. To intrinsically maximize the sodium storage of SnS, herein, lithium azides (LiN )-induced SnS quantum dots (QDs) are first reported using a simple electrospinning strategy, where SnS QDs are uniformly distributed in the carbon fibers. Taking the advantage of LiN , which can effectively prevent the growth of crystal nuclei during the thermal treatment, the well-dispersed SnS QDs performs superior Na transfer kinetics and pseudocapacitive when used as an anode material for NIBs. The 3D SnS quantum dots embedded uniformly in N-doped nanofibers (SnS QDs@NCF) electrodes display superior long cycling life-span (484.6 mAh g after 5800 cycles at 2 A g and 430.9 mAh g after 7880 cycles at 10 A g ), as well as excellent rate capability (422.3 mAh g at 20 A g ). This fabrication of transition metal sulfides QDs composites provide a feasible strategy to develop NIBs with long life-span and superior rate capability to pave its practical implementation.</description><subject>Anodes</subject><subject>Carbon fibers</subject><subject>Crystal growth</subject><subject>Cycles</subject><subject>Electrode materials</subject><subject>Heat treatment</subject><subject>Lithium</subject><subject>Metal sulfides</subject><subject>Nanotechnology</subject><subject>Quantum dots</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Transition metals</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkMFLwzAUh4Mobk6vHiXgxUtn8tIk7XGo00FBpNu5ZE06O9pmJulB_3o7Nnfw9B687_fj8SF0S8mUEgKPvm2aKRBgBGiSnKExFZRFIoH0_LRTMkJX3m8JYRRieYlGTAJPQZAxyrM6fNZ9i2c_tTYeLzrdl0bjvMvxR6-6MJyebfC4sg6vmuBUNFc-YNVpnNluEy2Na3Fu9b4jD9apjblGF5VqvLk5zglazV-WT29R9v66eJplUcmAhUjHJcRaJ1SamILicbpm5briMqkE46pKdWWUqWJDJFDGeaIlFwBSy5grSks2QQ-H3p2zX73xoWhrX5qmUZ2xvS8gASpYGgMf0Pt_6Nb2rhu-GyghIB1IMlDTA1U6670zVbFzdavcd0FJsddd7HUXJ91D4O5Y269bo0_4n1_2C4ryeXY</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Cheng, Qiaohuan</creator><creator>Li, Yingxue</creator><creator>Gao, Panyu</creator><creator>Xia, Guanglin</creator><creator>He, Shengnan</creator><creator>Yang, Yaxiong</creator><creator>Pan, Hongge</creator><creator>Yu, Xuebin</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4035-0991</orcidid></search><sort><creationdate>20230901</creationdate><title>Lithium Azides Induced SnS Quantum Dots for Ultra-Fast and Long-Term Sodium Storage</title><author>Cheng, Qiaohuan ; Li, Yingxue ; Gao, Panyu ; Xia, Guanglin ; He, Shengnan ; Yang, Yaxiong ; Pan, Hongge ; Yu, Xuebin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-d4c24dd817e412a549b3cbf578f635af9dfeaef4e07213558d756227d745a11c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anodes</topic><topic>Carbon fibers</topic><topic>Crystal growth</topic><topic>Cycles</topic><topic>Electrode materials</topic><topic>Heat treatment</topic><topic>Lithium</topic><topic>Metal sulfides</topic><topic>Nanotechnology</topic><topic>Quantum dots</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Qiaohuan</creatorcontrib><creatorcontrib>Li, Yingxue</creatorcontrib><creatorcontrib>Gao, Panyu</creatorcontrib><creatorcontrib>Xia, Guanglin</creatorcontrib><creatorcontrib>He, Shengnan</creatorcontrib><creatorcontrib>Yang, Yaxiong</creatorcontrib><creatorcontrib>Pan, Hongge</creatorcontrib><creatorcontrib>Yu, Xuebin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Qiaohuan</au><au>Li, Yingxue</au><au>Gao, Panyu</au><au>Xia, Guanglin</au><au>He, Shengnan</au><au>Yang, Yaxiong</au><au>Pan, Hongge</au><au>Yu, Xuebin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium Azides Induced SnS Quantum Dots for Ultra-Fast and Long-Term Sodium Storage</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>19</volume><issue>38</issue><spage>e2302188</spage><epage>e2302188</epage><pages>e2302188-e2302188</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Tin sulfide (SnS) is an attractive anode for sodium ion batteries (NIBs) because of its high theoretical capacity, while it seriously suffers from the inherently poor conductivity and huge volume variation during the cycling process, leading to inferior lifespan. To intrinsically maximize the sodium storage of SnS, herein, lithium azides (LiN )-induced SnS quantum dots (QDs) are first reported using a simple electrospinning strategy, where SnS QDs are uniformly distributed in the carbon fibers. Taking the advantage of LiN , which can effectively prevent the growth of crystal nuclei during the thermal treatment, the well-dispersed SnS QDs performs superior Na transfer kinetics and pseudocapacitive when used as an anode material for NIBs. The 3D SnS quantum dots embedded uniformly in N-doped nanofibers (SnS QDs@NCF) electrodes display superior long cycling life-span (484.6 mAh g after 5800 cycles at 2 A g and 430.9 mAh g after 7880 cycles at 10 A g ), as well as excellent rate capability (422.3 mAh g at 20 A g ). This fabrication of transition metal sulfides QDs composites provide a feasible strategy to develop NIBs with long life-span and superior rate capability to pave its practical implementation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37259260</pmid><doi>10.1002/smll.202302188</doi><orcidid>https://orcid.org/0000-0002-4035-0991</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2023-09, Vol.19 (38), p.e2302188-e2302188
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2821639425
source Wiley-Blackwell Read & Publish Collection
subjects Anodes
Carbon fibers
Crystal growth
Cycles
Electrode materials
Heat treatment
Lithium
Metal sulfides
Nanotechnology
Quantum dots
Sodium
Sodium-ion batteries
Transition metals
title Lithium Azides Induced SnS Quantum Dots for Ultra-Fast and Long-Term Sodium Storage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium%20Azides%20Induced%20SnS%20Quantum%20Dots%20for%20Ultra-Fast%20and%20Long-Term%20Sodium%20Storage&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Cheng,%20Qiaohuan&rft.date=2023-09-01&rft.volume=19&rft.issue=38&rft.spage=e2302188&rft.epage=e2302188&rft.pages=e2302188-e2302188&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202302188&rft_dat=%3Cproquest_cross%3E2821639425%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-d4c24dd817e412a549b3cbf578f635af9dfeaef4e07213558d756227d745a11c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2866292160&rft_id=info:pmid/37259260&rfr_iscdi=true