Loading…
Crypt-like patterned electrospun nanofibrous membrane and probiotics promote intestinal epithelium models close to tissues
In vitro intestinal epithelium models have drawn great attention to investigating intestinal biology in recent years. However, the difficulty to maintain the normal physiological status of primary intestinal epithelium in vitro limits the applications. Here, we designed patterned electrospun polylac...
Saved in:
Published in: | Applied microbiology and biotechnology 2023-07, Vol.107 (13), p.4395-4408 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c427t-5f6c1e608cc9638d9273c559106264976b8e8f996d6eb167c28ebfb33404df383 |
container_end_page | 4408 |
container_issue | 13 |
container_start_page | 4395 |
container_title | Applied microbiology and biotechnology |
container_volume | 107 |
creator | Li, Yue Niu, Hong-Mei Guo, Ya-Xin Ma, Xue-Ke Hu, Meng-Xin Han, Jian-Zhong Qin, Yu-Mei |
description | In vitro intestinal epithelium models have drawn great attention to investigating intestinal biology in recent years. However, the difficulty to maintain the normal physiological status of primary intestinal epithelium in vitro limits the applications. Here, we designed patterned electrospun polylactic acid (PLA) nanofibrous membranes with crypt-like topography and mimic ECM fibrous network to support crypt culture and construct in vitro intestinal epithelium models. The patterned electrospun PLA nanofibrous membranes modified with Matrigels at 0 °C showed high biocompatibility and promoted cell growth and proliferation. The constructed duodenum epithelium models and colon epithelium models on the patterned electrospun PLA nanofibrous membranes expressed the typical differentiation markers of intestinal epithelia and the gene expression levels were close to the original tissues, especially with the help of probiotics. The constructed intestinal epithelium models could be used to assess probiotic adhesion and colonization, which were verified to show significant differences with the Caco-2 cell models due to the different cell types. These findings provide new insights and a better understanding of the roles of biophysical, biochemical, and biological signals in the construction of in vitro intestinal epithelium models as well as the potential applications of these models in the study of host-gut microbes interactions.
Key points
•
Patterned electrospun scaffold has crypt-like topography and ECM nanofibrous network.
•
Matrigels at 0°C modify scaffolds more effectively than at 37°C.
•
Synergy of biomimic scaffold and probiotics makes in vitro model close to tissue. |
doi_str_mv | 10.1007/s00253-023-12602-4 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2822377339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A755414092</galeid><sourcerecordid>A755414092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-5f6c1e608cc9638d9273c559106264976b8e8f996d6eb167c28ebfb33404df383</originalsourceid><addsrcrecordid>eNp9kl1rFDEYhQdR7Fr9A15IwBu9mJrvzFyWxWqhIPhxHTKZd9bUTDImGbD--mbdalkRGciE5DknOeQ0zXOCzwjG6k3GmArWYspaQiWmLX_QbAhntMWS8IfNBhMlWiX67qR5kvM1xoR2Uj5uTpiiUopObJqf23SzlNa7b4AWUwqkACMCD7akmJc1oGBCnNyQ4prRDPOQTABkwoiWFAcXi7N5P51jAeRCgVxcMB7B4spX8G6d0RxH8BlZHzOgElFxOa-QnzaPJuMzPLv7nzZfLt5-3r5vrz68u9yeX7WWU1VaMUlLQOLO2l6ybuypYlaInmBJJe-VHDropr6Xo4SBSGVpB8M0MMYxHyfWsdPm1cG33vJ7Pbfo2WUL3tcgNZSmHaVMKcb6ir78C72Oa6px9hSr5rwO99TOeNAuTLEkY_em-lwJwQnHPa3U2T-o-o0wOxsDTK6uHwleHwkqU-BH2Zk1Z3356eMxSw-sra-UE0x6SW426UYTrPfl0Idy6FoO_ascmlfRi7t06zDD-Efyuw0VYAcg162wg3Qf_z-2t-uPxAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831674316</pqid></control><display><type>article</type><title>Crypt-like patterned electrospun nanofibrous membrane and probiotics promote intestinal epithelium models close to tissues</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Li, Yue ; Niu, Hong-Mei ; Guo, Ya-Xin ; Ma, Xue-Ke ; Hu, Meng-Xin ; Han, Jian-Zhong ; Qin, Yu-Mei</creator><creatorcontrib>Li, Yue ; Niu, Hong-Mei ; Guo, Ya-Xin ; Ma, Xue-Ke ; Hu, Meng-Xin ; Han, Jian-Zhong ; Qin, Yu-Mei</creatorcontrib><description>In vitro intestinal epithelium models have drawn great attention to investigating intestinal biology in recent years. However, the difficulty to maintain the normal physiological status of primary intestinal epithelium in vitro limits the applications. Here, we designed patterned electrospun polylactic acid (PLA) nanofibrous membranes with crypt-like topography and mimic ECM fibrous network to support crypt culture and construct in vitro intestinal epithelium models. The patterned electrospun PLA nanofibrous membranes modified with Matrigels at 0 °C showed high biocompatibility and promoted cell growth and proliferation. The constructed duodenum epithelium models and colon epithelium models on the patterned electrospun PLA nanofibrous membranes expressed the typical differentiation markers of intestinal epithelia and the gene expression levels were close to the original tissues, especially with the help of probiotics. The constructed intestinal epithelium models could be used to assess probiotic adhesion and colonization, which were verified to show significant differences with the Caco-2 cell models due to the different cell types. These findings provide new insights and a better understanding of the roles of biophysical, biochemical, and biological signals in the construction of in vitro intestinal epithelium models as well as the potential applications of these models in the study of host-gut microbes interactions.
Key points
•
Patterned electrospun scaffold has crypt-like topography and ECM nanofibrous network.
•
Matrigels at 0°C modify scaffolds more effectively than at 37°C.
•
Synergy of biomimic scaffold and probiotics makes in vitro model close to tissue.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-023-12602-4</identifier><identifier>PMID: 37266585</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Biocompatibility ; Biomedical and Life Sciences ; Biotechnology ; Cell culture ; Cell membranes ; Crypts ; Duodenum ; Epithelium ; Extracellular matrix ; Gene expression ; Identification and classification ; Intestine ; Ions ; Lactic acid ; Life Sciences ; Membranes ; Methods and Protocols ; Microbial Genetics and Genomics ; Microbiology ; Nanoparticles ; Polylactic acid ; Polymers ; Probiotics ; Properties ; Scaffolds ; Topography</subject><ispartof>Applied microbiology and biotechnology, 2023-07, Vol.107 (13), p.4395-4408</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c427t-5f6c1e608cc9638d9273c559106264976b8e8f996d6eb167c28ebfb33404df383</cites><orcidid>0000-0001-5912-601X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2831674316/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2831674316?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11687,27923,27924,36059,36060,44362,74666</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37266585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Niu, Hong-Mei</creatorcontrib><creatorcontrib>Guo, Ya-Xin</creatorcontrib><creatorcontrib>Ma, Xue-Ke</creatorcontrib><creatorcontrib>Hu, Meng-Xin</creatorcontrib><creatorcontrib>Han, Jian-Zhong</creatorcontrib><creatorcontrib>Qin, Yu-Mei</creatorcontrib><title>Crypt-like patterned electrospun nanofibrous membrane and probiotics promote intestinal epithelium models close to tissues</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>In vitro intestinal epithelium models have drawn great attention to investigating intestinal biology in recent years. However, the difficulty to maintain the normal physiological status of primary intestinal epithelium in vitro limits the applications. Here, we designed patterned electrospun polylactic acid (PLA) nanofibrous membranes with crypt-like topography and mimic ECM fibrous network to support crypt culture and construct in vitro intestinal epithelium models. The patterned electrospun PLA nanofibrous membranes modified with Matrigels at 0 °C showed high biocompatibility and promoted cell growth and proliferation. The constructed duodenum epithelium models and colon epithelium models on the patterned electrospun PLA nanofibrous membranes expressed the typical differentiation markers of intestinal epithelia and the gene expression levels were close to the original tissues, especially with the help of probiotics. The constructed intestinal epithelium models could be used to assess probiotic adhesion and colonization, which were verified to show significant differences with the Caco-2 cell models due to the different cell types. These findings provide new insights and a better understanding of the roles of biophysical, biochemical, and biological signals in the construction of in vitro intestinal epithelium models as well as the potential applications of these models in the study of host-gut microbes interactions.
Key points
•
Patterned electrospun scaffold has crypt-like topography and ECM nanofibrous network.
•
Matrigels at 0°C modify scaffolds more effectively than at 37°C.
•
Synergy of biomimic scaffold and probiotics makes in vitro model close to tissue.</description><subject>Analysis</subject><subject>Biocompatibility</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cell culture</subject><subject>Cell membranes</subject><subject>Crypts</subject><subject>Duodenum</subject><subject>Epithelium</subject><subject>Extracellular matrix</subject><subject>Gene expression</subject><subject>Identification and classification</subject><subject>Intestine</subject><subject>Ions</subject><subject>Lactic acid</subject><subject>Life Sciences</subject><subject>Membranes</subject><subject>Methods and Protocols</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Nanoparticles</subject><subject>Polylactic acid</subject><subject>Polymers</subject><subject>Probiotics</subject><subject>Properties</subject><subject>Scaffolds</subject><subject>Topography</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kl1rFDEYhQdR7Fr9A15IwBu9mJrvzFyWxWqhIPhxHTKZd9bUTDImGbD--mbdalkRGciE5DknOeQ0zXOCzwjG6k3GmArWYspaQiWmLX_QbAhntMWS8IfNBhMlWiX67qR5kvM1xoR2Uj5uTpiiUopObJqf23SzlNa7b4AWUwqkACMCD7akmJc1oGBCnNyQ4prRDPOQTABkwoiWFAcXi7N5P51jAeRCgVxcMB7B4spX8G6d0RxH8BlZHzOgElFxOa-QnzaPJuMzPLv7nzZfLt5-3r5vrz68u9yeX7WWU1VaMUlLQOLO2l6ybuypYlaInmBJJe-VHDropr6Xo4SBSGVpB8M0MMYxHyfWsdPm1cG33vJ7Pbfo2WUL3tcgNZSmHaVMKcb6ir78C72Oa6px9hSr5rwO99TOeNAuTLEkY_em-lwJwQnHPa3U2T-o-o0wOxsDTK6uHwleHwkqU-BH2Zk1Z3356eMxSw-sra-UE0x6SW426UYTrPfl0Idy6FoO_ascmlfRi7t06zDD-Efyuw0VYAcg162wg3Qf_z-2t-uPxAA</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Li, Yue</creator><creator>Niu, Hong-Mei</creator><creator>Guo, Ya-Xin</creator><creator>Ma, Xue-Ke</creator><creator>Hu, Meng-Xin</creator><creator>Han, Jian-Zhong</creator><creator>Qin, Yu-Mei</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5912-601X</orcidid></search><sort><creationdate>20230701</creationdate><title>Crypt-like patterned electrospun nanofibrous membrane and probiotics promote intestinal epithelium models close to tissues</title><author>Li, Yue ; Niu, Hong-Mei ; Guo, Ya-Xin ; Ma, Xue-Ke ; Hu, Meng-Xin ; Han, Jian-Zhong ; Qin, Yu-Mei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-5f6c1e608cc9638d9273c559106264976b8e8f996d6eb167c28ebfb33404df383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Biocompatibility</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cell culture</topic><topic>Cell membranes</topic><topic>Crypts</topic><topic>Duodenum</topic><topic>Epithelium</topic><topic>Extracellular matrix</topic><topic>Gene expression</topic><topic>Identification and classification</topic><topic>Intestine</topic><topic>Ions</topic><topic>Lactic acid</topic><topic>Life Sciences</topic><topic>Membranes</topic><topic>Methods and Protocols</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Nanoparticles</topic><topic>Polylactic acid</topic><topic>Polymers</topic><topic>Probiotics</topic><topic>Properties</topic><topic>Scaffolds</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Niu, Hong-Mei</creatorcontrib><creatorcontrib>Guo, Ya-Xin</creatorcontrib><creatorcontrib>Ma, Xue-Ke</creatorcontrib><creatorcontrib>Hu, Meng-Xin</creatorcontrib><creatorcontrib>Han, Jian-Zhong</creatorcontrib><creatorcontrib>Qin, Yu-Mei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yue</au><au>Niu, Hong-Mei</au><au>Guo, Ya-Xin</au><au>Ma, Xue-Ke</au><au>Hu, Meng-Xin</au><au>Han, Jian-Zhong</au><au>Qin, Yu-Mei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crypt-like patterned electrospun nanofibrous membrane and probiotics promote intestinal epithelium models close to tissues</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>107</volume><issue>13</issue><spage>4395</spage><epage>4408</epage><pages>4395-4408</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>In vitro intestinal epithelium models have drawn great attention to investigating intestinal biology in recent years. However, the difficulty to maintain the normal physiological status of primary intestinal epithelium in vitro limits the applications. Here, we designed patterned electrospun polylactic acid (PLA) nanofibrous membranes with crypt-like topography and mimic ECM fibrous network to support crypt culture and construct in vitro intestinal epithelium models. The patterned electrospun PLA nanofibrous membranes modified with Matrigels at 0 °C showed high biocompatibility and promoted cell growth and proliferation. The constructed duodenum epithelium models and colon epithelium models on the patterned electrospun PLA nanofibrous membranes expressed the typical differentiation markers of intestinal epithelia and the gene expression levels were close to the original tissues, especially with the help of probiotics. The constructed intestinal epithelium models could be used to assess probiotic adhesion and colonization, which were verified to show significant differences with the Caco-2 cell models due to the different cell types. These findings provide new insights and a better understanding of the roles of biophysical, biochemical, and biological signals in the construction of in vitro intestinal epithelium models as well as the potential applications of these models in the study of host-gut microbes interactions.
Key points
•
Patterned electrospun scaffold has crypt-like topography and ECM nanofibrous network.
•
Matrigels at 0°C modify scaffolds more effectively than at 37°C.
•
Synergy of biomimic scaffold and probiotics makes in vitro model close to tissue.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>37266585</pmid><doi>10.1007/s00253-023-12602-4</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5912-601X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2023-07, Vol.107 (13), p.4395-4408 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_2822377339 |
source | ABI/INFORM Global; Springer Nature |
subjects | Analysis Biocompatibility Biomedical and Life Sciences Biotechnology Cell culture Cell membranes Crypts Duodenum Epithelium Extracellular matrix Gene expression Identification and classification Intestine Ions Lactic acid Life Sciences Membranes Methods and Protocols Microbial Genetics and Genomics Microbiology Nanoparticles Polylactic acid Polymers Probiotics Properties Scaffolds Topography |
title | Crypt-like patterned electrospun nanofibrous membrane and probiotics promote intestinal epithelium models close to tissues |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A28%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crypt-like%20patterned%20electrospun%20nanofibrous%20membrane%20and%20probiotics%20promote%20intestinal%20epithelium%20models%20close%20to%20tissues&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Li,%20Yue&rft.date=2023-07-01&rft.volume=107&rft.issue=13&rft.spage=4395&rft.epage=4408&rft.pages=4395-4408&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-023-12602-4&rft_dat=%3Cgale_proqu%3EA755414092%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-5f6c1e608cc9638d9273c559106264976b8e8f996d6eb167c28ebfb33404df383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2831674316&rft_id=info:pmid/37266585&rft_galeid=A755414092&rfr_iscdi=true |