Loading…
Continuum modeling of the dynamics of externally injection-locked coupled oscillator arrays
Mutually injection-locked arrays of electronic oscillators provide a novel means of controlling the aperture phase of a phased-array antenna, thus achieving the advantages of spatial power combining while retaining the ability to steer the radiated beam. In a number of design concepts, one or more o...
Saved in:
Published in: | IEEE transactions on microwave theory and techniques 1999-04, Vol.47 (4), p.471-478 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mutually injection-locked arrays of electronic oscillators provide a novel means of controlling the aperture phase of a phased-array antenna, thus achieving the advantages of spatial power combining while retaining the ability to steer the radiated beam. In a number of design concepts, one or more of the oscillators are injection locked to a signal from an external master oscillator. The behavior of such a system has been analyzed by numerical solution of a system of nonlinear differential equations which, due to its complexity, yields limited insight into the relationship between the injection signals and the aperture phase. In this paper, we develop a continuum model, which results in a single partial differential equation for the aperture phase as a function of time. Solution of the equation is effected by means of the Laplace transform and yields detailed information concerning the dynamics of the array under the influence of the external injection signals. |
---|---|
ISSN: | 0018-9480 1557-9670 |
DOI: | 10.1109/22.754881 |