Loading…
Microbubbles-assisted ultrasonication to promote tumor accumulation of therapeutics and modulation of tumor microenvironment for enhanced cancer treatments
Abnormal tumor vasculature is reported to severely hinder the therapeutic potency of diverse cancer therapeutics by restricting their intratumoral accumulation and/or causing therapeutic resistance. Herein, a microbubble-assisted ultrasonication technology (MAUT) of systemic administration of octafl...
Saved in:
Published in: | Biomaterials 2023-08, Vol.299, p.122181-122181, Article 122181 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abnormal tumor vasculature is reported to severely hinder the therapeutic potency of diverse cancer therapeutics by restricting their intratumoral accumulation and/or causing therapeutic resistance. Herein, a microbubble-assisted ultrasonication technology (MAUT) of systemic administration of octafluoropropane-filled microbubbles together with tumor localized ultrasound (US) exposure is developed to generally promote intratumoral accumulation efficacy of three kinds of anti-tumor drugs with varying sizes through the cavitation effect-induced disruption of tumor blood vessels. MAUT was further shown to enable selective tumor hypoxia attenuation by filling microbubbles with high-purity oxygen and thus reducing the production of immunosuppressive lactic acids by suppressing glycolysis in cancer cells. Resultantly, MAUT markedly enhanced the therapeutic outcome of systemically administered anti-programmed death-1 (anti-PD-1) and chemotherapeutic doxorubicin (DOX) with and without using nanoscale liposomes as delivery vehicles. This work highlights that MAUT is a biocompatible yet versatile strategy to effectively reinforce the therapeutic potency of a broad range of cancer therapeutics, promising for future clinical usage. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2023.122181 |