Loading…

A paler shade of green: engineering cellular chlorophyll content to enhance photosynthesis in crowded environments

Summary In natural ecosystems, plants compete for space, nutrients and light. The optically dense canopies limit the penetration of photosynthetically active radiation and light often becomes a growth‐limiting factor for the understory. The reduced availability of photons in the lower leaf layers is...

Full description

Saved in:
Bibliographic Details
Published in:The New phytologist 2023-09, Vol.239 (5), p.1567-1583
Main Authors: Cutolo, Edoardo Andrea, Guardini, Zeno, Dall'Osto, Luca, Bassi, Roberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3884-c95b2536a75d6462631b2ade94824bd4dcd3640cc3a2519091e26f8093ae06c33
cites cdi_FETCH-LOGICAL-c3884-c95b2536a75d6462631b2ade94824bd4dcd3640cc3a2519091e26f8093ae06c33
container_end_page 1583
container_issue 5
container_start_page 1567
container_title The New phytologist
container_volume 239
creator Cutolo, Edoardo Andrea
Guardini, Zeno
Dall'Osto, Luca
Bassi, Roberto
description Summary In natural ecosystems, plants compete for space, nutrients and light. The optically dense canopies limit the penetration of photosynthetically active radiation and light often becomes a growth‐limiting factor for the understory. The reduced availability of photons in the lower leaf layers is also a major constraint for yield potential in canopies of crop monocultures. Traditionally, crop breeding has selected traits related to plant architecture and nutrient assimilation rather than light use efficiency. Leaf optical density is primarily determined by tissue morphology and by the foliar concentration of photosynthetic pigments (chlorophylls and carotenoids). Most pigment molecules are bound to light‐harvesting antenna proteins in the chloroplast thylakoid membranes, where they serve photon capture and excitation energy transfer toward reaction centers of photosystems. Engineering the abundance and composition of antenna proteins has been suggested as a strategy to improve light distribution within canopies and reduce the gap between theoretical and field productivity. Since the assembly of the photosynthetic antennas relies on several coordinated biological processes, many genetic targets are available for modulating cellular chlorophyll levels. In this review, we outline the rationale behind the advantages of developing pale green phenotypes and describe possible approaches toward engineering light‐harvesting systems.
doi_str_mv 10.1111/nph.19064
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2823495814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844452298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3884-c95b2536a75d6462631b2ade94824bd4dcd3640cc3a2519091e26f8093ae06c33</originalsourceid><addsrcrecordid>eNp10btKBDEUBuAgiq6XwheQgI0Wo7lNNrFbxBuIWijYDdnM2Z2RbDImM8q-vdFVC8E0ab785D8HoX1KTmg-p75rTqgmUqyhERVSF4ry8ToaEcJUIYV83kLbKb0QQnQp2Sba4mOmmJR8hOIEd8ZBxKkxNeAww_MI4M8w-HnrAWLr59iCc4MzEdvGhRi6ZukctsH34Hvch2wb4y3grgl9SEvfN5DahFuPbQzvNdRZvLUx-EV-kHbRxsy4BHvf9w56urx4PL8ubu-vbs4nt4XlSonC6nLKSi7NuKxzByY5nbL8Ry0UE9Na1LbmUhBruWFlbq8pMDlTRHMDRFrOd9DRKreL4XWA1FeLNn1WMR7CkKo8Ai50qajI9PAPfQlD9Pl3WQkhSsa0yup4pXKrlCLMqi62CxOXFSXV5yKqvIjqaxHZHnwnDtMF1L_yZ_IZnK7Ae-tg-X9SdfdwvYr8AHPZkvM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844452298</pqid></control><display><type>article</type><title>A paler shade of green: engineering cellular chlorophyll content to enhance photosynthesis in crowded environments</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Cutolo, Edoardo Andrea ; Guardini, Zeno ; Dall'Osto, Luca ; Bassi, Roberto</creator><creatorcontrib>Cutolo, Edoardo Andrea ; Guardini, Zeno ; Dall'Osto, Luca ; Bassi, Roberto</creatorcontrib><description>Summary In natural ecosystems, plants compete for space, nutrients and light. The optically dense canopies limit the penetration of photosynthetically active radiation and light often becomes a growth‐limiting factor for the understory. The reduced availability of photons in the lower leaf layers is also a major constraint for yield potential in canopies of crop monocultures. Traditionally, crop breeding has selected traits related to plant architecture and nutrient assimilation rather than light use efficiency. Leaf optical density is primarily determined by tissue morphology and by the foliar concentration of photosynthetic pigments (chlorophylls and carotenoids). Most pigment molecules are bound to light‐harvesting antenna proteins in the chloroplast thylakoid membranes, where they serve photon capture and excitation energy transfer toward reaction centers of photosystems. Engineering the abundance and composition of antenna proteins has been suggested as a strategy to improve light distribution within canopies and reduce the gap between theoretical and field productivity. Since the assembly of the photosynthetic antennas relies on several coordinated biological processes, many genetic targets are available for modulating cellular chlorophyll levels. In this review, we outline the rationale behind the advantages of developing pale green phenotypes and describe possible approaches toward engineering light‐harvesting systems.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.19064</identifier><identifier>PMID: 37282663</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Antennas ; Availability ; Biological activity ; Breeding ; Canopies ; Canopy ; canopy photosynthesis ; Carotenoids ; Chlorophyll ; Chlorophyll - metabolism ; Chlorophylls ; Chloroplasts ; crop yield potential ; Ecosystem ; Energy transfer ; Harvesting ; Histology ; leaf optical properties ; Leaves ; Light ; Light distribution ; light use efficiency ; Limiting factors ; Membranes ; Monoculture ; non‐photochemical quenching ; Nutrient uptake ; Nutrients ; Optical density ; pale green crops ; Phenotypes ; Photons ; Photosynthesis ; photosynthetic antenna ; Photosynthetic pigments ; Photosynthetically active radiation ; Photosystems ; Pigments ; Plant Breeding ; Plant cover ; Plant Leaves - metabolism ; Plants - metabolism ; Proteins ; Reaction centers ; Thylakoid membranes ; Understory</subject><ispartof>The New phytologist, 2023-09, Vol.239 (5), p.1567-1583</ispartof><rights>2023 The Authors. © 2023 New Phytologist Foundation</rights><rights>2023 The Authors. New Phytologist © 2023 New Phytologist Foundation.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3884-c95b2536a75d6462631b2ade94824bd4dcd3640cc3a2519091e26f8093ae06c33</citedby><cites>FETCH-LOGICAL-c3884-c95b2536a75d6462631b2ade94824bd4dcd3640cc3a2519091e26f8093ae06c33</cites><orcidid>0000-0001-5396-4469 ; 0000-0002-6773-4047 ; 0000-0001-9497-5156 ; 0000-0002-4140-8446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37282663$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cutolo, Edoardo Andrea</creatorcontrib><creatorcontrib>Guardini, Zeno</creatorcontrib><creatorcontrib>Dall'Osto, Luca</creatorcontrib><creatorcontrib>Bassi, Roberto</creatorcontrib><title>A paler shade of green: engineering cellular chlorophyll content to enhance photosynthesis in crowded environments</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Summary In natural ecosystems, plants compete for space, nutrients and light. The optically dense canopies limit the penetration of photosynthetically active radiation and light often becomes a growth‐limiting factor for the understory. The reduced availability of photons in the lower leaf layers is also a major constraint for yield potential in canopies of crop monocultures. Traditionally, crop breeding has selected traits related to plant architecture and nutrient assimilation rather than light use efficiency. Leaf optical density is primarily determined by tissue morphology and by the foliar concentration of photosynthetic pigments (chlorophylls and carotenoids). Most pigment molecules are bound to light‐harvesting antenna proteins in the chloroplast thylakoid membranes, where they serve photon capture and excitation energy transfer toward reaction centers of photosystems. Engineering the abundance and composition of antenna proteins has been suggested as a strategy to improve light distribution within canopies and reduce the gap between theoretical and field productivity. Since the assembly of the photosynthetic antennas relies on several coordinated biological processes, many genetic targets are available for modulating cellular chlorophyll levels. In this review, we outline the rationale behind the advantages of developing pale green phenotypes and describe possible approaches toward engineering light‐harvesting systems.</description><subject>Antennas</subject><subject>Availability</subject><subject>Biological activity</subject><subject>Breeding</subject><subject>Canopies</subject><subject>Canopy</subject><subject>canopy photosynthesis</subject><subject>Carotenoids</subject><subject>Chlorophyll</subject><subject>Chlorophyll - metabolism</subject><subject>Chlorophylls</subject><subject>Chloroplasts</subject><subject>crop yield potential</subject><subject>Ecosystem</subject><subject>Energy transfer</subject><subject>Harvesting</subject><subject>Histology</subject><subject>leaf optical properties</subject><subject>Leaves</subject><subject>Light</subject><subject>Light distribution</subject><subject>light use efficiency</subject><subject>Limiting factors</subject><subject>Membranes</subject><subject>Monoculture</subject><subject>non‐photochemical quenching</subject><subject>Nutrient uptake</subject><subject>Nutrients</subject><subject>Optical density</subject><subject>pale green crops</subject><subject>Phenotypes</subject><subject>Photons</subject><subject>Photosynthesis</subject><subject>photosynthetic antenna</subject><subject>Photosynthetic pigments</subject><subject>Photosynthetically active radiation</subject><subject>Photosystems</subject><subject>Pigments</subject><subject>Plant Breeding</subject><subject>Plant cover</subject><subject>Plant Leaves - metabolism</subject><subject>Plants - metabolism</subject><subject>Proteins</subject><subject>Reaction centers</subject><subject>Thylakoid membranes</subject><subject>Understory</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10btKBDEUBuAgiq6XwheQgI0Wo7lNNrFbxBuIWijYDdnM2Z2RbDImM8q-vdFVC8E0ab785D8HoX1KTmg-p75rTqgmUqyhERVSF4ry8ToaEcJUIYV83kLbKb0QQnQp2Sba4mOmmJR8hOIEd8ZBxKkxNeAww_MI4M8w-HnrAWLr59iCc4MzEdvGhRi6ZukctsH34Hvch2wb4y3grgl9SEvfN5DahFuPbQzvNdRZvLUx-EV-kHbRxsy4BHvf9w56urx4PL8ubu-vbs4nt4XlSonC6nLKSi7NuKxzByY5nbL8Ry0UE9Na1LbmUhBruWFlbq8pMDlTRHMDRFrOd9DRKreL4XWA1FeLNn1WMR7CkKo8Ai50qajI9PAPfQlD9Pl3WQkhSsa0yup4pXKrlCLMqi62CxOXFSXV5yKqvIjqaxHZHnwnDtMF1L_yZ_IZnK7Ae-tg-X9SdfdwvYr8AHPZkvM</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Cutolo, Edoardo Andrea</creator><creator>Guardini, Zeno</creator><creator>Dall'Osto, Luca</creator><creator>Bassi, Roberto</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5396-4469</orcidid><orcidid>https://orcid.org/0000-0002-6773-4047</orcidid><orcidid>https://orcid.org/0000-0001-9497-5156</orcidid><orcidid>https://orcid.org/0000-0002-4140-8446</orcidid></search><sort><creationdate>202309</creationdate><title>A paler shade of green: engineering cellular chlorophyll content to enhance photosynthesis in crowded environments</title><author>Cutolo, Edoardo Andrea ; Guardini, Zeno ; Dall'Osto, Luca ; Bassi, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3884-c95b2536a75d6462631b2ade94824bd4dcd3640cc3a2519091e26f8093ae06c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antennas</topic><topic>Availability</topic><topic>Biological activity</topic><topic>Breeding</topic><topic>Canopies</topic><topic>Canopy</topic><topic>canopy photosynthesis</topic><topic>Carotenoids</topic><topic>Chlorophyll</topic><topic>Chlorophyll - metabolism</topic><topic>Chlorophylls</topic><topic>Chloroplasts</topic><topic>crop yield potential</topic><topic>Ecosystem</topic><topic>Energy transfer</topic><topic>Harvesting</topic><topic>Histology</topic><topic>leaf optical properties</topic><topic>Leaves</topic><topic>Light</topic><topic>Light distribution</topic><topic>light use efficiency</topic><topic>Limiting factors</topic><topic>Membranes</topic><topic>Monoculture</topic><topic>non‐photochemical quenching</topic><topic>Nutrient uptake</topic><topic>Nutrients</topic><topic>Optical density</topic><topic>pale green crops</topic><topic>Phenotypes</topic><topic>Photons</topic><topic>Photosynthesis</topic><topic>photosynthetic antenna</topic><topic>Photosynthetic pigments</topic><topic>Photosynthetically active radiation</topic><topic>Photosystems</topic><topic>Pigments</topic><topic>Plant Breeding</topic><topic>Plant cover</topic><topic>Plant Leaves - metabolism</topic><topic>Plants - metabolism</topic><topic>Proteins</topic><topic>Reaction centers</topic><topic>Thylakoid membranes</topic><topic>Understory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cutolo, Edoardo Andrea</creatorcontrib><creatorcontrib>Guardini, Zeno</creatorcontrib><creatorcontrib>Dall'Osto, Luca</creatorcontrib><creatorcontrib>Bassi, Roberto</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley-Blackwell Backfiles (Open access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cutolo, Edoardo Andrea</au><au>Guardini, Zeno</au><au>Dall'Osto, Luca</au><au>Bassi, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A paler shade of green: engineering cellular chlorophyll content to enhance photosynthesis in crowded environments</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2023-09</date><risdate>2023</risdate><volume>239</volume><issue>5</issue><spage>1567</spage><epage>1583</epage><pages>1567-1583</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Summary In natural ecosystems, plants compete for space, nutrients and light. The optically dense canopies limit the penetration of photosynthetically active radiation and light often becomes a growth‐limiting factor for the understory. The reduced availability of photons in the lower leaf layers is also a major constraint for yield potential in canopies of crop monocultures. Traditionally, crop breeding has selected traits related to plant architecture and nutrient assimilation rather than light use efficiency. Leaf optical density is primarily determined by tissue morphology and by the foliar concentration of photosynthetic pigments (chlorophylls and carotenoids). Most pigment molecules are bound to light‐harvesting antenna proteins in the chloroplast thylakoid membranes, where they serve photon capture and excitation energy transfer toward reaction centers of photosystems. Engineering the abundance and composition of antenna proteins has been suggested as a strategy to improve light distribution within canopies and reduce the gap between theoretical and field productivity. Since the assembly of the photosynthetic antennas relies on several coordinated biological processes, many genetic targets are available for modulating cellular chlorophyll levels. In this review, we outline the rationale behind the advantages of developing pale green phenotypes and describe possible approaches toward engineering light‐harvesting systems.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37282663</pmid><doi>10.1111/nph.19064</doi><tpages>1583</tpages><orcidid>https://orcid.org/0000-0001-5396-4469</orcidid><orcidid>https://orcid.org/0000-0002-6773-4047</orcidid><orcidid>https://orcid.org/0000-0001-9497-5156</orcidid><orcidid>https://orcid.org/0000-0002-4140-8446</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2023-09, Vol.239 (5), p.1567-1583
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_2823495814
source Wiley-Blackwell Read & Publish Collection
subjects Antennas
Availability
Biological activity
Breeding
Canopies
Canopy
canopy photosynthesis
Carotenoids
Chlorophyll
Chlorophyll - metabolism
Chlorophylls
Chloroplasts
crop yield potential
Ecosystem
Energy transfer
Harvesting
Histology
leaf optical properties
Leaves
Light
Light distribution
light use efficiency
Limiting factors
Membranes
Monoculture
non‐photochemical quenching
Nutrient uptake
Nutrients
Optical density
pale green crops
Phenotypes
Photons
Photosynthesis
photosynthetic antenna
Photosynthetic pigments
Photosynthetically active radiation
Photosystems
Pigments
Plant Breeding
Plant cover
Plant Leaves - metabolism
Plants - metabolism
Proteins
Reaction centers
Thylakoid membranes
Understory
title A paler shade of green: engineering cellular chlorophyll content to enhance photosynthesis in crowded environments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A38%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20paler%20shade%20of%20green:%20engineering%20cellular%20chlorophyll%20content%20to%20enhance%20photosynthesis%20in%20crowded%20environments&rft.jtitle=The%20New%20phytologist&rft.au=Cutolo,%20Edoardo%20Andrea&rft.date=2023-09&rft.volume=239&rft.issue=5&rft.spage=1567&rft.epage=1583&rft.pages=1567-1583&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.19064&rft_dat=%3Cproquest_cross%3E2844452298%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3884-c95b2536a75d6462631b2ade94824bd4dcd3640cc3a2519091e26f8093ae06c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2844452298&rft_id=info:pmid/37282663&rfr_iscdi=true