Loading…
A paler shade of green: engineering cellular chlorophyll content to enhance photosynthesis in crowded environments
Summary In natural ecosystems, plants compete for space, nutrients and light. The optically dense canopies limit the penetration of photosynthetically active radiation and light often becomes a growth‐limiting factor for the understory. The reduced availability of photons in the lower leaf layers is...
Saved in:
Published in: | The New phytologist 2023-09, Vol.239 (5), p.1567-1583 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3884-c95b2536a75d6462631b2ade94824bd4dcd3640cc3a2519091e26f8093ae06c33 |
---|---|
cites | cdi_FETCH-LOGICAL-c3884-c95b2536a75d6462631b2ade94824bd4dcd3640cc3a2519091e26f8093ae06c33 |
container_end_page | 1583 |
container_issue | 5 |
container_start_page | 1567 |
container_title | The New phytologist |
container_volume | 239 |
creator | Cutolo, Edoardo Andrea Guardini, Zeno Dall'Osto, Luca Bassi, Roberto |
description | Summary
In natural ecosystems, plants compete for space, nutrients and light. The optically dense canopies limit the penetration of photosynthetically active radiation and light often becomes a growth‐limiting factor for the understory. The reduced availability of photons in the lower leaf layers is also a major constraint for yield potential in canopies of crop monocultures. Traditionally, crop breeding has selected traits related to plant architecture and nutrient assimilation rather than light use efficiency. Leaf optical density is primarily determined by tissue morphology and by the foliar concentration of photosynthetic pigments (chlorophylls and carotenoids). Most pigment molecules are bound to light‐harvesting antenna proteins in the chloroplast thylakoid membranes, where they serve photon capture and excitation energy transfer toward reaction centers of photosystems. Engineering the abundance and composition of antenna proteins has been suggested as a strategy to improve light distribution within canopies and reduce the gap between theoretical and field productivity. Since the assembly of the photosynthetic antennas relies on several coordinated biological processes, many genetic targets are available for modulating cellular chlorophyll levels. In this review, we outline the rationale behind the advantages of developing pale green phenotypes and describe possible approaches toward engineering light‐harvesting systems. |
doi_str_mv | 10.1111/nph.19064 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2823495814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844452298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3884-c95b2536a75d6462631b2ade94824bd4dcd3640cc3a2519091e26f8093ae06c33</originalsourceid><addsrcrecordid>eNp10btKBDEUBuAgiq6XwheQgI0Wo7lNNrFbxBuIWijYDdnM2Z2RbDImM8q-vdFVC8E0ab785D8HoX1KTmg-p75rTqgmUqyhERVSF4ry8ToaEcJUIYV83kLbKb0QQnQp2Sba4mOmmJR8hOIEd8ZBxKkxNeAww_MI4M8w-HnrAWLr59iCc4MzEdvGhRi6ZukctsH34Hvch2wb4y3grgl9SEvfN5DahFuPbQzvNdRZvLUx-EV-kHbRxsy4BHvf9w56urx4PL8ubu-vbs4nt4XlSonC6nLKSi7NuKxzByY5nbL8Ry0UE9Na1LbmUhBruWFlbq8pMDlTRHMDRFrOd9DRKreL4XWA1FeLNn1WMR7CkKo8Ai50qajI9PAPfQlD9Pl3WQkhSsa0yup4pXKrlCLMqi62CxOXFSXV5yKqvIjqaxHZHnwnDtMF1L_yZ_IZnK7Ae-tg-X9SdfdwvYr8AHPZkvM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844452298</pqid></control><display><type>article</type><title>A paler shade of green: engineering cellular chlorophyll content to enhance photosynthesis in crowded environments</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Cutolo, Edoardo Andrea ; Guardini, Zeno ; Dall'Osto, Luca ; Bassi, Roberto</creator><creatorcontrib>Cutolo, Edoardo Andrea ; Guardini, Zeno ; Dall'Osto, Luca ; Bassi, Roberto</creatorcontrib><description>Summary
In natural ecosystems, plants compete for space, nutrients and light. The optically dense canopies limit the penetration of photosynthetically active radiation and light often becomes a growth‐limiting factor for the understory. The reduced availability of photons in the lower leaf layers is also a major constraint for yield potential in canopies of crop monocultures. Traditionally, crop breeding has selected traits related to plant architecture and nutrient assimilation rather than light use efficiency. Leaf optical density is primarily determined by tissue morphology and by the foliar concentration of photosynthetic pigments (chlorophylls and carotenoids). Most pigment molecules are bound to light‐harvesting antenna proteins in the chloroplast thylakoid membranes, where they serve photon capture and excitation energy transfer toward reaction centers of photosystems. Engineering the abundance and composition of antenna proteins has been suggested as a strategy to improve light distribution within canopies and reduce the gap between theoretical and field productivity. Since the assembly of the photosynthetic antennas relies on several coordinated biological processes, many genetic targets are available for modulating cellular chlorophyll levels. In this review, we outline the rationale behind the advantages of developing pale green phenotypes and describe possible approaches toward engineering light‐harvesting systems.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.19064</identifier><identifier>PMID: 37282663</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Antennas ; Availability ; Biological activity ; Breeding ; Canopies ; Canopy ; canopy photosynthesis ; Carotenoids ; Chlorophyll ; Chlorophyll - metabolism ; Chlorophylls ; Chloroplasts ; crop yield potential ; Ecosystem ; Energy transfer ; Harvesting ; Histology ; leaf optical properties ; Leaves ; Light ; Light distribution ; light use efficiency ; Limiting factors ; Membranes ; Monoculture ; non‐photochemical quenching ; Nutrient uptake ; Nutrients ; Optical density ; pale green crops ; Phenotypes ; Photons ; Photosynthesis ; photosynthetic antenna ; Photosynthetic pigments ; Photosynthetically active radiation ; Photosystems ; Pigments ; Plant Breeding ; Plant cover ; Plant Leaves - metabolism ; Plants - metabolism ; Proteins ; Reaction centers ; Thylakoid membranes ; Understory</subject><ispartof>The New phytologist, 2023-09, Vol.239 (5), p.1567-1583</ispartof><rights>2023 The Authors. © 2023 New Phytologist Foundation</rights><rights>2023 The Authors. New Phytologist © 2023 New Phytologist Foundation.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3884-c95b2536a75d6462631b2ade94824bd4dcd3640cc3a2519091e26f8093ae06c33</citedby><cites>FETCH-LOGICAL-c3884-c95b2536a75d6462631b2ade94824bd4dcd3640cc3a2519091e26f8093ae06c33</cites><orcidid>0000-0001-5396-4469 ; 0000-0002-6773-4047 ; 0000-0001-9497-5156 ; 0000-0002-4140-8446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37282663$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cutolo, Edoardo Andrea</creatorcontrib><creatorcontrib>Guardini, Zeno</creatorcontrib><creatorcontrib>Dall'Osto, Luca</creatorcontrib><creatorcontrib>Bassi, Roberto</creatorcontrib><title>A paler shade of green: engineering cellular chlorophyll content to enhance photosynthesis in crowded environments</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Summary
In natural ecosystems, plants compete for space, nutrients and light. The optically dense canopies limit the penetration of photosynthetically active radiation and light often becomes a growth‐limiting factor for the understory. The reduced availability of photons in the lower leaf layers is also a major constraint for yield potential in canopies of crop monocultures. Traditionally, crop breeding has selected traits related to plant architecture and nutrient assimilation rather than light use efficiency. Leaf optical density is primarily determined by tissue morphology and by the foliar concentration of photosynthetic pigments (chlorophylls and carotenoids). Most pigment molecules are bound to light‐harvesting antenna proteins in the chloroplast thylakoid membranes, where they serve photon capture and excitation energy transfer toward reaction centers of photosystems. Engineering the abundance and composition of antenna proteins has been suggested as a strategy to improve light distribution within canopies and reduce the gap between theoretical and field productivity. Since the assembly of the photosynthetic antennas relies on several coordinated biological processes, many genetic targets are available for modulating cellular chlorophyll levels. In this review, we outline the rationale behind the advantages of developing pale green phenotypes and describe possible approaches toward engineering light‐harvesting systems.</description><subject>Antennas</subject><subject>Availability</subject><subject>Biological activity</subject><subject>Breeding</subject><subject>Canopies</subject><subject>Canopy</subject><subject>canopy photosynthesis</subject><subject>Carotenoids</subject><subject>Chlorophyll</subject><subject>Chlorophyll - metabolism</subject><subject>Chlorophylls</subject><subject>Chloroplasts</subject><subject>crop yield potential</subject><subject>Ecosystem</subject><subject>Energy transfer</subject><subject>Harvesting</subject><subject>Histology</subject><subject>leaf optical properties</subject><subject>Leaves</subject><subject>Light</subject><subject>Light distribution</subject><subject>light use efficiency</subject><subject>Limiting factors</subject><subject>Membranes</subject><subject>Monoculture</subject><subject>non‐photochemical quenching</subject><subject>Nutrient uptake</subject><subject>Nutrients</subject><subject>Optical density</subject><subject>pale green crops</subject><subject>Phenotypes</subject><subject>Photons</subject><subject>Photosynthesis</subject><subject>photosynthetic antenna</subject><subject>Photosynthetic pigments</subject><subject>Photosynthetically active radiation</subject><subject>Photosystems</subject><subject>Pigments</subject><subject>Plant Breeding</subject><subject>Plant cover</subject><subject>Plant Leaves - metabolism</subject><subject>Plants - metabolism</subject><subject>Proteins</subject><subject>Reaction centers</subject><subject>Thylakoid membranes</subject><subject>Understory</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10btKBDEUBuAgiq6XwheQgI0Wo7lNNrFbxBuIWijYDdnM2Z2RbDImM8q-vdFVC8E0ab785D8HoX1KTmg-p75rTqgmUqyhERVSF4ry8ToaEcJUIYV83kLbKb0QQnQp2Sba4mOmmJR8hOIEd8ZBxKkxNeAww_MI4M8w-HnrAWLr59iCc4MzEdvGhRi6ZukctsH34Hvch2wb4y3grgl9SEvfN5DahFuPbQzvNdRZvLUx-EV-kHbRxsy4BHvf9w56urx4PL8ubu-vbs4nt4XlSonC6nLKSi7NuKxzByY5nbL8Ry0UE9Na1LbmUhBruWFlbq8pMDlTRHMDRFrOd9DRKreL4XWA1FeLNn1WMR7CkKo8Ai50qajI9PAPfQlD9Pl3WQkhSsa0yup4pXKrlCLMqi62CxOXFSXV5yKqvIjqaxHZHnwnDtMF1L_yZ_IZnK7Ae-tg-X9SdfdwvYr8AHPZkvM</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Cutolo, Edoardo Andrea</creator><creator>Guardini, Zeno</creator><creator>Dall'Osto, Luca</creator><creator>Bassi, Roberto</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5396-4469</orcidid><orcidid>https://orcid.org/0000-0002-6773-4047</orcidid><orcidid>https://orcid.org/0000-0001-9497-5156</orcidid><orcidid>https://orcid.org/0000-0002-4140-8446</orcidid></search><sort><creationdate>202309</creationdate><title>A paler shade of green: engineering cellular chlorophyll content to enhance photosynthesis in crowded environments</title><author>Cutolo, Edoardo Andrea ; Guardini, Zeno ; Dall'Osto, Luca ; Bassi, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3884-c95b2536a75d6462631b2ade94824bd4dcd3640cc3a2519091e26f8093ae06c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antennas</topic><topic>Availability</topic><topic>Biological activity</topic><topic>Breeding</topic><topic>Canopies</topic><topic>Canopy</topic><topic>canopy photosynthesis</topic><topic>Carotenoids</topic><topic>Chlorophyll</topic><topic>Chlorophyll - metabolism</topic><topic>Chlorophylls</topic><topic>Chloroplasts</topic><topic>crop yield potential</topic><topic>Ecosystem</topic><topic>Energy transfer</topic><topic>Harvesting</topic><topic>Histology</topic><topic>leaf optical properties</topic><topic>Leaves</topic><topic>Light</topic><topic>Light distribution</topic><topic>light use efficiency</topic><topic>Limiting factors</topic><topic>Membranes</topic><topic>Monoculture</topic><topic>non‐photochemical quenching</topic><topic>Nutrient uptake</topic><topic>Nutrients</topic><topic>Optical density</topic><topic>pale green crops</topic><topic>Phenotypes</topic><topic>Photons</topic><topic>Photosynthesis</topic><topic>photosynthetic antenna</topic><topic>Photosynthetic pigments</topic><topic>Photosynthetically active radiation</topic><topic>Photosystems</topic><topic>Pigments</topic><topic>Plant Breeding</topic><topic>Plant cover</topic><topic>Plant Leaves - metabolism</topic><topic>Plants - metabolism</topic><topic>Proteins</topic><topic>Reaction centers</topic><topic>Thylakoid membranes</topic><topic>Understory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cutolo, Edoardo Andrea</creatorcontrib><creatorcontrib>Guardini, Zeno</creatorcontrib><creatorcontrib>Dall'Osto, Luca</creatorcontrib><creatorcontrib>Bassi, Roberto</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley-Blackwell Backfiles (Open access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cutolo, Edoardo Andrea</au><au>Guardini, Zeno</au><au>Dall'Osto, Luca</au><au>Bassi, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A paler shade of green: engineering cellular chlorophyll content to enhance photosynthesis in crowded environments</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2023-09</date><risdate>2023</risdate><volume>239</volume><issue>5</issue><spage>1567</spage><epage>1583</epage><pages>1567-1583</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Summary
In natural ecosystems, plants compete for space, nutrients and light. The optically dense canopies limit the penetration of photosynthetically active radiation and light often becomes a growth‐limiting factor for the understory. The reduced availability of photons in the lower leaf layers is also a major constraint for yield potential in canopies of crop monocultures. Traditionally, crop breeding has selected traits related to plant architecture and nutrient assimilation rather than light use efficiency. Leaf optical density is primarily determined by tissue morphology and by the foliar concentration of photosynthetic pigments (chlorophylls and carotenoids). Most pigment molecules are bound to light‐harvesting antenna proteins in the chloroplast thylakoid membranes, where they serve photon capture and excitation energy transfer toward reaction centers of photosystems. Engineering the abundance and composition of antenna proteins has been suggested as a strategy to improve light distribution within canopies and reduce the gap between theoretical and field productivity. Since the assembly of the photosynthetic antennas relies on several coordinated biological processes, many genetic targets are available for modulating cellular chlorophyll levels. In this review, we outline the rationale behind the advantages of developing pale green phenotypes and describe possible approaches toward engineering light‐harvesting systems.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37282663</pmid><doi>10.1111/nph.19064</doi><tpages>1583</tpages><orcidid>https://orcid.org/0000-0001-5396-4469</orcidid><orcidid>https://orcid.org/0000-0002-6773-4047</orcidid><orcidid>https://orcid.org/0000-0001-9497-5156</orcidid><orcidid>https://orcid.org/0000-0002-4140-8446</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2023-09, Vol.239 (5), p.1567-1583 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_proquest_miscellaneous_2823495814 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Antennas Availability Biological activity Breeding Canopies Canopy canopy photosynthesis Carotenoids Chlorophyll Chlorophyll - metabolism Chlorophylls Chloroplasts crop yield potential Ecosystem Energy transfer Harvesting Histology leaf optical properties Leaves Light Light distribution light use efficiency Limiting factors Membranes Monoculture non‐photochemical quenching Nutrient uptake Nutrients Optical density pale green crops Phenotypes Photons Photosynthesis photosynthetic antenna Photosynthetic pigments Photosynthetically active radiation Photosystems Pigments Plant Breeding Plant cover Plant Leaves - metabolism Plants - metabolism Proteins Reaction centers Thylakoid membranes Understory |
title | A paler shade of green: engineering cellular chlorophyll content to enhance photosynthesis in crowded environments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A38%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20paler%20shade%20of%20green:%20engineering%20cellular%20chlorophyll%20content%20to%20enhance%20photosynthesis%20in%20crowded%20environments&rft.jtitle=The%20New%20phytologist&rft.au=Cutolo,%20Edoardo%20Andrea&rft.date=2023-09&rft.volume=239&rft.issue=5&rft.spage=1567&rft.epage=1583&rft.pages=1567-1583&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.19064&rft_dat=%3Cproquest_cross%3E2844452298%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3884-c95b2536a75d6462631b2ade94824bd4dcd3640cc3a2519091e26f8093ae06c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2844452298&rft_id=info:pmid/37282663&rfr_iscdi=true |