Loading…

The ubiquitin E3 ligase MDM2 induces chemoresistance in colorectal cancer by degradation of ING3

Abstract Chemoresistance is an obstacle for colorectal cancer (CRC) treatment. This study investigates the role of the ubiquitin E3 ligase MDM2 in affecting cell growth and chemosensitivity in CRC cells by modifying the transcription factor inhibitor of growth protein 3 (ING3). The expression of MDM...

Full description

Saved in:
Bibliographic Details
Published in:Carcinogenesis (New York) 2023-10, Vol.44 (7), p.562-575
Main Authors: Zhang, Liangliang, Zhu, Dagang, Jiang, Jiwen, Min, Zhenyu, Fa, Zhenzhong
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Chemoresistance is an obstacle for colorectal cancer (CRC) treatment. This study investigates the role of the ubiquitin E3 ligase MDM2 in affecting cell growth and chemosensitivity in CRC cells by modifying the transcription factor inhibitor of growth protein 3 (ING3). The expression of MDM2 and ING3 in CRC tissues was predicted by bioinformatics analysis, followed by expression validation and their interaction in CRC HCT116 and LS180 cells. Ectopic overexpression or knockdown of MDM2/ING3 was performed to test their effect on proliferation and apotptosis as well as chemosensitivity of CRC cells. Finally, the effect of MDM2/ING3 expression on the in vivo tumorigenesis of CRC cells was examined through subcutaneous tumor xenograft experiment in nude mice. MDM2 promoted ubiquitin-proteasome pathway degradation of ING3 through ubiquitination and diminished its protein stability. Overexpression of MDM2 downregulated ING3 expression, which promoted CRC cell proliferation and inhibited the apoptosis. The enhancing role of MDM2 in tumorigenesis and resistance to chemotherapeutic drugs was also confirmed in vivo. Our findings highlight that MDM2 modifies the transcription factor ING3 by ubiquitination-proteasome pathway degradation, thus reducing ING3 protein stability, which finally promotes CRC cell growth and chemoresistance. Our findings highlight that MDM2 modifies the transcription factor ING3 by ubiquitination-proteasome pathway degradation, thus reducing ING3 protein stability, which finally promotes CRC cell growth and chemoresistance. Graphical Abstract Graphical Abstract
ISSN:0143-3334
1460-2180
DOI:10.1093/carcin/bgad040