Loading…

Deep-etched distributed Bragg reflector lasers with curved mirrors. Experiments and modeling

A semiconductor laser with deep-etched distributed Bragg reflectors (DBRs) supporting a planar Gaussian mode has been experimentally and theoretically studied. A 90-/spl mu/m-long laser with two-groove DBRs has a low threshold current of 7 mA and a maximum side mode suppression of 17.6 dB under cont...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of quantum electronics 2001-06, Vol.37 (6), p.752-761
Main Authors: Modh, P., Eriksson, N., Teixeiro, M.Q., Larsson, A., Suhara, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c394t-141a455c97bccf3880d4d276fd4af7f4b1cb1b1586c17a1418fa4c34a051d7f73
cites cdi_FETCH-LOGICAL-c394t-141a455c97bccf3880d4d276fd4af7f4b1cb1b1586c17a1418fa4c34a051d7f73
container_end_page 761
container_issue 6
container_start_page 752
container_title IEEE journal of quantum electronics
container_volume 37
creator Modh, P.
Eriksson, N.
Teixeiro, M.Q.
Larsson, A.
Suhara, T.
description A semiconductor laser with deep-etched distributed Bragg reflectors (DBRs) supporting a planar Gaussian mode has been experimentally and theoretically studied. A 90-/spl mu/m-long laser with two-groove DBRs has a low threshold current of 7 mA and a maximum side mode suppression of 17.6 dB under continuous operation. The laser resonator supports a mode that closely resembles the desired planar Gaussian mode. The reflectivities of the deep-etched DBRs were experimentally determined using broad area devices, and the reflection, transmission, and scattering properties of the DBRs were simulated using a finite-difference time-domain model. The simulations show that deep grooves, covering the full transverse extent of the guided mode, are needed to maximize the reflectivity and to minimize the scattering loss. A beam-propagation model was used to simulate the laser resonator. The simulations (as well as the experiments) show that the laser is sensitive to thermal effects. Thermal lensing narrows the mode waist, and therefore increases the spatial hole burning in the center of the resonator where the intensity is at its maximum. At high drive currents, this leads to a degradation of the spatial mode quality. The simulations also indicate that a laser with optimized DBRs (one one- and one two-groove DBRs with an etch depth of 1 /spl mu/m) would have a threshold current less than 2 mA and support a high-quality planar Gaussian mode to an output power of 9 mW under continuous operation.
doi_str_mv 10.1109/3.922772
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_28236758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>922772</ieee_id><sourcerecordid>1671277295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-141a455c97bccf3880d4d276fd4af7f4b1cb1b1586c17a1418fa4c34a051d7f73</originalsourceid><addsrcrecordid>eNqF0UtLxDAQB_AgCq4P8OypKIiXrp02z6OuTxC86E0oaTpZI912TVof394su6h40FMS5sc_zAwhe5CNATJ1UoxVnguRr5ERMCZTEFCsk1GWgUwVKLFJtkJ4jk9KZTYij-eI8xR784R1UrvQe1cNfbyfeT2dJh5tg6bvfNLogD4kb65_SszgXyOZOe87H8bJxfscvZth24dEt7HQ1di4drpDNqxuAu6uzm3ycHlxP7lOb--ubiant6kpFO1ToKApY0aJyhhbSJnVtM4FtzXVVlhagamgAia5AaGjllZTU1CdMaiFFcU2OVrmzn33MmDoy5kLBptGt9gNocxlXnDB5P-QcykF5REe_wmBC1hMWbFID37R527wbey3lJIKwTj_kWd8F0KcajmPA9P-o4SsXOytLMrl3iI9XOXpYHRjvW6NC19eCank4tf9pXKI-F1cRnwCcGeefg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884775666</pqid></control><display><type>article</type><title>Deep-etched distributed Bragg reflector lasers with curved mirrors. Experiments and modeling</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Modh, P. ; Eriksson, N. ; Teixeiro, M.Q. ; Larsson, A. ; Suhara, T.</creator><creatorcontrib>Modh, P. ; Eriksson, N. ; Teixeiro, M.Q. ; Larsson, A. ; Suhara, T.</creatorcontrib><description>A semiconductor laser with deep-etched distributed Bragg reflectors (DBRs) supporting a planar Gaussian mode has been experimentally and theoretically studied. A 90-/spl mu/m-long laser with two-groove DBRs has a low threshold current of 7 mA and a maximum side mode suppression of 17.6 dB under continuous operation. The laser resonator supports a mode that closely resembles the desired planar Gaussian mode. The reflectivities of the deep-etched DBRs were experimentally determined using broad area devices, and the reflection, transmission, and scattering properties of the DBRs were simulated using a finite-difference time-domain model. The simulations show that deep grooves, covering the full transverse extent of the guided mode, are needed to maximize the reflectivity and to minimize the scattering loss. A beam-propagation model was used to simulate the laser resonator. The simulations (as well as the experiments) show that the laser is sensitive to thermal effects. Thermal lensing narrows the mode waist, and therefore increases the spatial hole burning in the center of the resonator where the intensity is at its maximum. At high drive currents, this leads to a degradation of the spatial mode quality. The simulations also indicate that a laser with optimized DBRs (one one- and one two-groove DBRs with an etch depth of 1 /spl mu/m) would have a threshold current less than 2 mA and support a high-quality planar Gaussian mode to an output power of 9 mW under continuous operation.</description><identifier>ISSN: 0018-9197</identifier><identifier>EISSN: 1558-1713</identifier><identifier>DOI: 10.1109/3.922772</identifier><identifier>CODEN: IEJQA7</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Bragg reflectors ; Computer simulation ; Distributed Bragg reflectors ; Exact sciences and technology ; Finite difference methods ; Fundamental areas of phenomenology (including applications) ; Gaussian ; General laser theory ; Laser modes ; Laser theory ; Lasers ; Mirrors ; Optical reflection ; Optics ; Physics ; Reflectivity ; Resonators ; Scattering ; Semiconductor lasers ; Semiconductor lasers; laser diodes ; Threshold current ; Threshold currents</subject><ispartof>IEEE journal of quantum electronics, 2001-06, Vol.37 (6), p.752-761</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-141a455c97bccf3880d4d276fd4af7f4b1cb1b1586c17a1418fa4c34a051d7f73</citedby><cites>FETCH-LOGICAL-c394t-141a455c97bccf3880d4d276fd4af7f4b1cb1b1586c17a1418fa4c34a051d7f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/922772$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=978985$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Modh, P.</creatorcontrib><creatorcontrib>Eriksson, N.</creatorcontrib><creatorcontrib>Teixeiro, M.Q.</creatorcontrib><creatorcontrib>Larsson, A.</creatorcontrib><creatorcontrib>Suhara, T.</creatorcontrib><title>Deep-etched distributed Bragg reflector lasers with curved mirrors. Experiments and modeling</title><title>IEEE journal of quantum electronics</title><addtitle>JQE</addtitle><description>A semiconductor laser with deep-etched distributed Bragg reflectors (DBRs) supporting a planar Gaussian mode has been experimentally and theoretically studied. A 90-/spl mu/m-long laser with two-groove DBRs has a low threshold current of 7 mA and a maximum side mode suppression of 17.6 dB under continuous operation. The laser resonator supports a mode that closely resembles the desired planar Gaussian mode. The reflectivities of the deep-etched DBRs were experimentally determined using broad area devices, and the reflection, transmission, and scattering properties of the DBRs were simulated using a finite-difference time-domain model. The simulations show that deep grooves, covering the full transverse extent of the guided mode, are needed to maximize the reflectivity and to minimize the scattering loss. A beam-propagation model was used to simulate the laser resonator. The simulations (as well as the experiments) show that the laser is sensitive to thermal effects. Thermal lensing narrows the mode waist, and therefore increases the spatial hole burning in the center of the resonator where the intensity is at its maximum. At high drive currents, this leads to a degradation of the spatial mode quality. The simulations also indicate that a laser with optimized DBRs (one one- and one two-groove DBRs with an etch depth of 1 /spl mu/m) would have a threshold current less than 2 mA and support a high-quality planar Gaussian mode to an output power of 9 mW under continuous operation.</description><subject>Bragg reflectors</subject><subject>Computer simulation</subject><subject>Distributed Bragg reflectors</subject><subject>Exact sciences and technology</subject><subject>Finite difference methods</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gaussian</subject><subject>General laser theory</subject><subject>Laser modes</subject><subject>Laser theory</subject><subject>Lasers</subject><subject>Mirrors</subject><subject>Optical reflection</subject><subject>Optics</subject><subject>Physics</subject><subject>Reflectivity</subject><subject>Resonators</subject><subject>Scattering</subject><subject>Semiconductor lasers</subject><subject>Semiconductor lasers; laser diodes</subject><subject>Threshold current</subject><subject>Threshold currents</subject><issn>0018-9197</issn><issn>1558-1713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqF0UtLxDAQB_AgCq4P8OypKIiXrp02z6OuTxC86E0oaTpZI912TVof394su6h40FMS5sc_zAwhe5CNATJ1UoxVnguRr5ERMCZTEFCsk1GWgUwVKLFJtkJ4jk9KZTYij-eI8xR784R1UrvQe1cNfbyfeT2dJh5tg6bvfNLogD4kb65_SszgXyOZOe87H8bJxfscvZth24dEt7HQ1di4drpDNqxuAu6uzm3ycHlxP7lOb--ubiant6kpFO1ToKApY0aJyhhbSJnVtM4FtzXVVlhagamgAia5AaGjllZTU1CdMaiFFcU2OVrmzn33MmDoy5kLBptGt9gNocxlXnDB5P-QcykF5REe_wmBC1hMWbFID37R527wbey3lJIKwTj_kWd8F0KcajmPA9P-o4SsXOytLMrl3iI9XOXpYHRjvW6NC19eCank4tf9pXKI-F1cRnwCcGeefg</recordid><startdate>20010601</startdate><enddate>20010601</enddate><creator>Modh, P.</creator><creator>Eriksson, N.</creator><creator>Teixeiro, M.Q.</creator><creator>Larsson, A.</creator><creator>Suhara, T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope></search><sort><creationdate>20010601</creationdate><title>Deep-etched distributed Bragg reflector lasers with curved mirrors. Experiments and modeling</title><author>Modh, P. ; Eriksson, N. ; Teixeiro, M.Q. ; Larsson, A. ; Suhara, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-141a455c97bccf3880d4d276fd4af7f4b1cb1b1586c17a1418fa4c34a051d7f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Bragg reflectors</topic><topic>Computer simulation</topic><topic>Distributed Bragg reflectors</topic><topic>Exact sciences and technology</topic><topic>Finite difference methods</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gaussian</topic><topic>General laser theory</topic><topic>Laser modes</topic><topic>Laser theory</topic><topic>Lasers</topic><topic>Mirrors</topic><topic>Optical reflection</topic><topic>Optics</topic><topic>Physics</topic><topic>Reflectivity</topic><topic>Resonators</topic><topic>Scattering</topic><topic>Semiconductor lasers</topic><topic>Semiconductor lasers; laser diodes</topic><topic>Threshold current</topic><topic>Threshold currents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Modh, P.</creatorcontrib><creatorcontrib>Eriksson, N.</creatorcontrib><creatorcontrib>Teixeiro, M.Q.</creatorcontrib><creatorcontrib>Larsson, A.</creatorcontrib><creatorcontrib>Suhara, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><jtitle>IEEE journal of quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Modh, P.</au><au>Eriksson, N.</au><au>Teixeiro, M.Q.</au><au>Larsson, A.</au><au>Suhara, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep-etched distributed Bragg reflector lasers with curved mirrors. Experiments and modeling</atitle><jtitle>IEEE journal of quantum electronics</jtitle><stitle>JQE</stitle><date>2001-06-01</date><risdate>2001</risdate><volume>37</volume><issue>6</issue><spage>752</spage><epage>761</epage><pages>752-761</pages><issn>0018-9197</issn><eissn>1558-1713</eissn><coden>IEJQA7</coden><abstract>A semiconductor laser with deep-etched distributed Bragg reflectors (DBRs) supporting a planar Gaussian mode has been experimentally and theoretically studied. A 90-/spl mu/m-long laser with two-groove DBRs has a low threshold current of 7 mA and a maximum side mode suppression of 17.6 dB under continuous operation. The laser resonator supports a mode that closely resembles the desired planar Gaussian mode. The reflectivities of the deep-etched DBRs were experimentally determined using broad area devices, and the reflection, transmission, and scattering properties of the DBRs were simulated using a finite-difference time-domain model. The simulations show that deep grooves, covering the full transverse extent of the guided mode, are needed to maximize the reflectivity and to minimize the scattering loss. A beam-propagation model was used to simulate the laser resonator. The simulations (as well as the experiments) show that the laser is sensitive to thermal effects. Thermal lensing narrows the mode waist, and therefore increases the spatial hole burning in the center of the resonator where the intensity is at its maximum. At high drive currents, this leads to a degradation of the spatial mode quality. The simulations also indicate that a laser with optimized DBRs (one one- and one two-groove DBRs with an etch depth of 1 /spl mu/m) would have a threshold current less than 2 mA and support a high-quality planar Gaussian mode to an output power of 9 mW under continuous operation.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/3.922772</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9197
ispartof IEEE journal of quantum electronics, 2001-06, Vol.37 (6), p.752-761
issn 0018-9197
1558-1713
language eng
recordid cdi_proquest_miscellaneous_28236758
source IEEE Electronic Library (IEL) Journals
subjects Bragg reflectors
Computer simulation
Distributed Bragg reflectors
Exact sciences and technology
Finite difference methods
Fundamental areas of phenomenology (including applications)
Gaussian
General laser theory
Laser modes
Laser theory
Lasers
Mirrors
Optical reflection
Optics
Physics
Reflectivity
Resonators
Scattering
Semiconductor lasers
Semiconductor lasers
laser diodes
Threshold current
Threshold currents
title Deep-etched distributed Bragg reflector lasers with curved mirrors. Experiments and modeling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A41%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep-etched%20distributed%20Bragg%20reflector%20lasers%20with%20curved%20mirrors.%20Experiments%20and%20modeling&rft.jtitle=IEEE%20journal%20of%20quantum%20electronics&rft.au=Modh,%20P.&rft.date=2001-06-01&rft.volume=37&rft.issue=6&rft.spage=752&rft.epage=761&rft.pages=752-761&rft.issn=0018-9197&rft.eissn=1558-1713&rft.coden=IEJQA7&rft_id=info:doi/10.1109/3.922772&rft_dat=%3Cproquest_pasca%3E1671277295%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c394t-141a455c97bccf3880d4d276fd4af7f4b1cb1b1586c17a1418fa4c34a051d7f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884775666&rft_id=info:pmid/&rft_ieee_id=922772&rfr_iscdi=true