Loading…
Deep-etched distributed Bragg reflector lasers with curved mirrors. Experiments and modeling
A semiconductor laser with deep-etched distributed Bragg reflectors (DBRs) supporting a planar Gaussian mode has been experimentally and theoretically studied. A 90-/spl mu/m-long laser with two-groove DBRs has a low threshold current of 7 mA and a maximum side mode suppression of 17.6 dB under cont...
Saved in:
Published in: | IEEE journal of quantum electronics 2001-06, Vol.37 (6), p.752-761 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c394t-141a455c97bccf3880d4d276fd4af7f4b1cb1b1586c17a1418fa4c34a051d7f73 |
---|---|
cites | cdi_FETCH-LOGICAL-c394t-141a455c97bccf3880d4d276fd4af7f4b1cb1b1586c17a1418fa4c34a051d7f73 |
container_end_page | 761 |
container_issue | 6 |
container_start_page | 752 |
container_title | IEEE journal of quantum electronics |
container_volume | 37 |
creator | Modh, P. Eriksson, N. Teixeiro, M.Q. Larsson, A. Suhara, T. |
description | A semiconductor laser with deep-etched distributed Bragg reflectors (DBRs) supporting a planar Gaussian mode has been experimentally and theoretically studied. A 90-/spl mu/m-long laser with two-groove DBRs has a low threshold current of 7 mA and a maximum side mode suppression of 17.6 dB under continuous operation. The laser resonator supports a mode that closely resembles the desired planar Gaussian mode. The reflectivities of the deep-etched DBRs were experimentally determined using broad area devices, and the reflection, transmission, and scattering properties of the DBRs were simulated using a finite-difference time-domain model. The simulations show that deep grooves, covering the full transverse extent of the guided mode, are needed to maximize the reflectivity and to minimize the scattering loss. A beam-propagation model was used to simulate the laser resonator. The simulations (as well as the experiments) show that the laser is sensitive to thermal effects. Thermal lensing narrows the mode waist, and therefore increases the spatial hole burning in the center of the resonator where the intensity is at its maximum. At high drive currents, this leads to a degradation of the spatial mode quality. The simulations also indicate that a laser with optimized DBRs (one one- and one two-groove DBRs with an etch depth of 1 /spl mu/m) would have a threshold current less than 2 mA and support a high-quality planar Gaussian mode to an output power of 9 mW under continuous operation. |
doi_str_mv | 10.1109/3.922772 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_28236758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>922772</ieee_id><sourcerecordid>1671277295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-141a455c97bccf3880d4d276fd4af7f4b1cb1b1586c17a1418fa4c34a051d7f73</originalsourceid><addsrcrecordid>eNqF0UtLxDAQB_AgCq4P8OypKIiXrp02z6OuTxC86E0oaTpZI912TVof394su6h40FMS5sc_zAwhe5CNATJ1UoxVnguRr5ERMCZTEFCsk1GWgUwVKLFJtkJ4jk9KZTYij-eI8xR784R1UrvQe1cNfbyfeT2dJh5tg6bvfNLogD4kb65_SszgXyOZOe87H8bJxfscvZth24dEt7HQ1di4drpDNqxuAu6uzm3ycHlxP7lOb--ubiant6kpFO1ToKApY0aJyhhbSJnVtM4FtzXVVlhagamgAia5AaGjllZTU1CdMaiFFcU2OVrmzn33MmDoy5kLBptGt9gNocxlXnDB5P-QcykF5REe_wmBC1hMWbFID37R527wbey3lJIKwTj_kWd8F0KcajmPA9P-o4SsXOytLMrl3iI9XOXpYHRjvW6NC19eCank4tf9pXKI-F1cRnwCcGeefg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884775666</pqid></control><display><type>article</type><title>Deep-etched distributed Bragg reflector lasers with curved mirrors. Experiments and modeling</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Modh, P. ; Eriksson, N. ; Teixeiro, M.Q. ; Larsson, A. ; Suhara, T.</creator><creatorcontrib>Modh, P. ; Eriksson, N. ; Teixeiro, M.Q. ; Larsson, A. ; Suhara, T.</creatorcontrib><description>A semiconductor laser with deep-etched distributed Bragg reflectors (DBRs) supporting a planar Gaussian mode has been experimentally and theoretically studied. A 90-/spl mu/m-long laser with two-groove DBRs has a low threshold current of 7 mA and a maximum side mode suppression of 17.6 dB under continuous operation. The laser resonator supports a mode that closely resembles the desired planar Gaussian mode. The reflectivities of the deep-etched DBRs were experimentally determined using broad area devices, and the reflection, transmission, and scattering properties of the DBRs were simulated using a finite-difference time-domain model. The simulations show that deep grooves, covering the full transverse extent of the guided mode, are needed to maximize the reflectivity and to minimize the scattering loss. A beam-propagation model was used to simulate the laser resonator. The simulations (as well as the experiments) show that the laser is sensitive to thermal effects. Thermal lensing narrows the mode waist, and therefore increases the spatial hole burning in the center of the resonator where the intensity is at its maximum. At high drive currents, this leads to a degradation of the spatial mode quality. The simulations also indicate that a laser with optimized DBRs (one one- and one two-groove DBRs with an etch depth of 1 /spl mu/m) would have a threshold current less than 2 mA and support a high-quality planar Gaussian mode to an output power of 9 mW under continuous operation.</description><identifier>ISSN: 0018-9197</identifier><identifier>EISSN: 1558-1713</identifier><identifier>DOI: 10.1109/3.922772</identifier><identifier>CODEN: IEJQA7</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Bragg reflectors ; Computer simulation ; Distributed Bragg reflectors ; Exact sciences and technology ; Finite difference methods ; Fundamental areas of phenomenology (including applications) ; Gaussian ; General laser theory ; Laser modes ; Laser theory ; Lasers ; Mirrors ; Optical reflection ; Optics ; Physics ; Reflectivity ; Resonators ; Scattering ; Semiconductor lasers ; Semiconductor lasers; laser diodes ; Threshold current ; Threshold currents</subject><ispartof>IEEE journal of quantum electronics, 2001-06, Vol.37 (6), p.752-761</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-141a455c97bccf3880d4d276fd4af7f4b1cb1b1586c17a1418fa4c34a051d7f73</citedby><cites>FETCH-LOGICAL-c394t-141a455c97bccf3880d4d276fd4af7f4b1cb1b1586c17a1418fa4c34a051d7f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/922772$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=978985$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Modh, P.</creatorcontrib><creatorcontrib>Eriksson, N.</creatorcontrib><creatorcontrib>Teixeiro, M.Q.</creatorcontrib><creatorcontrib>Larsson, A.</creatorcontrib><creatorcontrib>Suhara, T.</creatorcontrib><title>Deep-etched distributed Bragg reflector lasers with curved mirrors. Experiments and modeling</title><title>IEEE journal of quantum electronics</title><addtitle>JQE</addtitle><description>A semiconductor laser with deep-etched distributed Bragg reflectors (DBRs) supporting a planar Gaussian mode has been experimentally and theoretically studied. A 90-/spl mu/m-long laser with two-groove DBRs has a low threshold current of 7 mA and a maximum side mode suppression of 17.6 dB under continuous operation. The laser resonator supports a mode that closely resembles the desired planar Gaussian mode. The reflectivities of the deep-etched DBRs were experimentally determined using broad area devices, and the reflection, transmission, and scattering properties of the DBRs were simulated using a finite-difference time-domain model. The simulations show that deep grooves, covering the full transverse extent of the guided mode, are needed to maximize the reflectivity and to minimize the scattering loss. A beam-propagation model was used to simulate the laser resonator. The simulations (as well as the experiments) show that the laser is sensitive to thermal effects. Thermal lensing narrows the mode waist, and therefore increases the spatial hole burning in the center of the resonator where the intensity is at its maximum. At high drive currents, this leads to a degradation of the spatial mode quality. The simulations also indicate that a laser with optimized DBRs (one one- and one two-groove DBRs with an etch depth of 1 /spl mu/m) would have a threshold current less than 2 mA and support a high-quality planar Gaussian mode to an output power of 9 mW under continuous operation.</description><subject>Bragg reflectors</subject><subject>Computer simulation</subject><subject>Distributed Bragg reflectors</subject><subject>Exact sciences and technology</subject><subject>Finite difference methods</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gaussian</subject><subject>General laser theory</subject><subject>Laser modes</subject><subject>Laser theory</subject><subject>Lasers</subject><subject>Mirrors</subject><subject>Optical reflection</subject><subject>Optics</subject><subject>Physics</subject><subject>Reflectivity</subject><subject>Resonators</subject><subject>Scattering</subject><subject>Semiconductor lasers</subject><subject>Semiconductor lasers; laser diodes</subject><subject>Threshold current</subject><subject>Threshold currents</subject><issn>0018-9197</issn><issn>1558-1713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqF0UtLxDAQB_AgCq4P8OypKIiXrp02z6OuTxC86E0oaTpZI912TVof394su6h40FMS5sc_zAwhe5CNATJ1UoxVnguRr5ERMCZTEFCsk1GWgUwVKLFJtkJ4jk9KZTYij-eI8xR784R1UrvQe1cNfbyfeT2dJh5tg6bvfNLogD4kb65_SszgXyOZOe87H8bJxfscvZth24dEt7HQ1di4drpDNqxuAu6uzm3ycHlxP7lOb--ubiant6kpFO1ToKApY0aJyhhbSJnVtM4FtzXVVlhagamgAia5AaGjllZTU1CdMaiFFcU2OVrmzn33MmDoy5kLBptGt9gNocxlXnDB5P-QcykF5REe_wmBC1hMWbFID37R527wbey3lJIKwTj_kWd8F0KcajmPA9P-o4SsXOytLMrl3iI9XOXpYHRjvW6NC19eCank4tf9pXKI-F1cRnwCcGeefg</recordid><startdate>20010601</startdate><enddate>20010601</enddate><creator>Modh, P.</creator><creator>Eriksson, N.</creator><creator>Teixeiro, M.Q.</creator><creator>Larsson, A.</creator><creator>Suhara, T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope></search><sort><creationdate>20010601</creationdate><title>Deep-etched distributed Bragg reflector lasers with curved mirrors. Experiments and modeling</title><author>Modh, P. ; Eriksson, N. ; Teixeiro, M.Q. ; Larsson, A. ; Suhara, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-141a455c97bccf3880d4d276fd4af7f4b1cb1b1586c17a1418fa4c34a051d7f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Bragg reflectors</topic><topic>Computer simulation</topic><topic>Distributed Bragg reflectors</topic><topic>Exact sciences and technology</topic><topic>Finite difference methods</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gaussian</topic><topic>General laser theory</topic><topic>Laser modes</topic><topic>Laser theory</topic><topic>Lasers</topic><topic>Mirrors</topic><topic>Optical reflection</topic><topic>Optics</topic><topic>Physics</topic><topic>Reflectivity</topic><topic>Resonators</topic><topic>Scattering</topic><topic>Semiconductor lasers</topic><topic>Semiconductor lasers; laser diodes</topic><topic>Threshold current</topic><topic>Threshold currents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Modh, P.</creatorcontrib><creatorcontrib>Eriksson, N.</creatorcontrib><creatorcontrib>Teixeiro, M.Q.</creatorcontrib><creatorcontrib>Larsson, A.</creatorcontrib><creatorcontrib>Suhara, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><jtitle>IEEE journal of quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Modh, P.</au><au>Eriksson, N.</au><au>Teixeiro, M.Q.</au><au>Larsson, A.</au><au>Suhara, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep-etched distributed Bragg reflector lasers with curved mirrors. Experiments and modeling</atitle><jtitle>IEEE journal of quantum electronics</jtitle><stitle>JQE</stitle><date>2001-06-01</date><risdate>2001</risdate><volume>37</volume><issue>6</issue><spage>752</spage><epage>761</epage><pages>752-761</pages><issn>0018-9197</issn><eissn>1558-1713</eissn><coden>IEJQA7</coden><abstract>A semiconductor laser with deep-etched distributed Bragg reflectors (DBRs) supporting a planar Gaussian mode has been experimentally and theoretically studied. A 90-/spl mu/m-long laser with two-groove DBRs has a low threshold current of 7 mA and a maximum side mode suppression of 17.6 dB under continuous operation. The laser resonator supports a mode that closely resembles the desired planar Gaussian mode. The reflectivities of the deep-etched DBRs were experimentally determined using broad area devices, and the reflection, transmission, and scattering properties of the DBRs were simulated using a finite-difference time-domain model. The simulations show that deep grooves, covering the full transverse extent of the guided mode, are needed to maximize the reflectivity and to minimize the scattering loss. A beam-propagation model was used to simulate the laser resonator. The simulations (as well as the experiments) show that the laser is sensitive to thermal effects. Thermal lensing narrows the mode waist, and therefore increases the spatial hole burning in the center of the resonator where the intensity is at its maximum. At high drive currents, this leads to a degradation of the spatial mode quality. The simulations also indicate that a laser with optimized DBRs (one one- and one two-groove DBRs with an etch depth of 1 /spl mu/m) would have a threshold current less than 2 mA and support a high-quality planar Gaussian mode to an output power of 9 mW under continuous operation.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/3.922772</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9197 |
ispartof | IEEE journal of quantum electronics, 2001-06, Vol.37 (6), p.752-761 |
issn | 0018-9197 1558-1713 |
language | eng |
recordid | cdi_proquest_miscellaneous_28236758 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Bragg reflectors Computer simulation Distributed Bragg reflectors Exact sciences and technology Finite difference methods Fundamental areas of phenomenology (including applications) Gaussian General laser theory Laser modes Laser theory Lasers Mirrors Optical reflection Optics Physics Reflectivity Resonators Scattering Semiconductor lasers Semiconductor lasers laser diodes Threshold current Threshold currents |
title | Deep-etched distributed Bragg reflector lasers with curved mirrors. Experiments and modeling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A41%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep-etched%20distributed%20Bragg%20reflector%20lasers%20with%20curved%20mirrors.%20Experiments%20and%20modeling&rft.jtitle=IEEE%20journal%20of%20quantum%20electronics&rft.au=Modh,%20P.&rft.date=2001-06-01&rft.volume=37&rft.issue=6&rft.spage=752&rft.epage=761&rft.pages=752-761&rft.issn=0018-9197&rft.eissn=1558-1713&rft.coden=IEJQA7&rft_id=info:doi/10.1109/3.922772&rft_dat=%3Cproquest_pasca%3E1671277295%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c394t-141a455c97bccf3880d4d276fd4af7f4b1cb1b1586c17a1418fa4c34a051d7f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884775666&rft_id=info:pmid/&rft_ieee_id=922772&rfr_iscdi=true |