Loading…
Carrier energy relaxation time in quantum-well lasers
Carrier energy relaxation via carrier-polar optical phonon interactions with hot phonon effects in multisubband quantum-well structures is theoretically studied by using both bulk longitudinal optical phonons and confined longitudinal optical phonons. We find that the width and the depth of quantum...
Saved in:
Published in: | IEEE journal of quantum electronics 1995-12, Vol.31 (12), p.2148-2158 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Carrier energy relaxation via carrier-polar optical phonon interactions with hot phonon effects in multisubband quantum-well structures is theoretically studied by using both bulk longitudinal optical phonons and confined longitudinal optical phonons. We find that the width and the depth of quantum wells only have moderate effects on carrier energy relaxation rates. Our results also indicate that the difference of energy relaxation rates between the quantum well and the bulk material is not significant. We investigate the effects of longitudinal optical phonon lifetimes on the carrier energy relaxation rate. Neglect of the finite decay time of longitudinal optical phonons will significantly underestimate the carrier energy relaxation time; this not only contradicts the experimental results but also severely underestimates the nonlinear gain coefficient due to carrier heating. The implications of our theoretical results in designing high-speed quantum-well lasers are discussed. |
---|---|
ISSN: | 0018-9197 1558-1713 |
DOI: | 10.1109/3.477740 |