Loading…

Measurement of electron transport properties of molecular junctions fabricated by electrochemical and mechanical methods

We describe two methods to fabricate metal-molecule-metal junctions. The first method starts with a pair of electrodes separated with a molecular scale gap on an oxidized silicon substrate. These electrodes are fabricated by combining electron beam lithography and electrochemical deposition/etching....

Full description

Saved in:
Bibliographic Details
Published in:Surface science 2004-12, Vol.573 (1), p.1-10
Main Authors: Li, X.L., He, H.X., Xu, B.Q., Xiao, X.Y., Nagahara, L.A., Amlani, I., Tsui, R., Tao, N.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-a1c67f15e209aa44c85a5acec20d9a7627040ea691ef60b0d0ce2a15bd1e7a0d3
cites cdi_FETCH-LOGICAL-c359t-a1c67f15e209aa44c85a5acec20d9a7627040ea691ef60b0d0ce2a15bd1e7a0d3
container_end_page 10
container_issue 1
container_start_page 1
container_title Surface science
container_volume 573
creator Li, X.L.
He, H.X.
Xu, B.Q.
Xiao, X.Y.
Nagahara, L.A.
Amlani, I.
Tsui, R.
Tao, N.J.
description We describe two methods to fabricate metal-molecule-metal junctions. The first method starts with a pair of electrodes separated with a molecular scale gap on an oxidized silicon substrate. These electrodes are fabricated by combining electron beam lithography and electrochemical deposition/etching. A molecular junction is formed when a molecule bridges the gap. This method can fabricate rather stable molecular junctions, however, the yield is low and the exact number of molecules in the junctions is uncertain. The second method forms a molecular junction by separating a scanning tunneling microscope tip from contact with a metal substrate in a solution containing sample molecules. This method, although is not device compatible, can create a large number of molecular junctions over a short period of time, which is ideal for statistical analysis.
doi_str_mv 10.1016/j.susc.2004.04.061
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28239305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S003960280400980X</els_id><sourcerecordid>28239305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-a1c67f15e209aa44c85a5acec20d9a7627040ea691ef60b0d0ce2a15bd1e7a0d3</originalsourceid><addsrcrecordid>eNp9kE9v1DAQxS1EJZbSL8DJF7hlGTuJk0hcUMU_qYgLPVuz9kTrVRIvHgfRb1-HLeLGaKSRR7951ntCvFawV6DMu9OeV3Z7DdDstzbqmdipvhsq3bX9c7EDqIfKgO5fiJfMJyjVDO1O_P5GyGuimZYs4yhpIpdTXGROuPA5pizPKZ4p5UC8AXMsxDphkqd1cTnEheWIhxQcZvLy8PBXwh1pLstJ4uLlTO6Iy5_nTPkYPb8SVyNOTDdP81rcf_r44_ZLdff989fbD3eVq9shV6ic6UbVkoYBsWlc32KLjpwGP2BndAcNEJpB0WjgAB4caVTtwSvqEHx9Ld5edIuNnytxtnNgR9OEC8WVre51PdTQFlBfQJcic6LRnlOYMT1YBXYL2Z7sFrLdQrZbG1WO3jypIxdzYwnNBf53aWpdqi_c-wtHxeqvQMmyC7Q48iGVtKyP4X_fPAK93par</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28239305</pqid></control><display><type>article</type><title>Measurement of electron transport properties of molecular junctions fabricated by electrochemical and mechanical methods</title><source>ScienceDirect Freedom Collection</source><creator>Li, X.L. ; He, H.X. ; Xu, B.Q. ; Xiao, X.Y. ; Nagahara, L.A. ; Amlani, I. ; Tsui, R. ; Tao, N.J.</creator><creatorcontrib>Li, X.L. ; He, H.X. ; Xu, B.Q. ; Xiao, X.Y. ; Nagahara, L.A. ; Amlani, I. ; Tsui, R. ; Tao, N.J.</creatorcontrib><description>We describe two methods to fabricate metal-molecule-metal junctions. The first method starts with a pair of electrodes separated with a molecular scale gap on an oxidized silicon substrate. These electrodes are fabricated by combining electron beam lithography and electrochemical deposition/etching. A molecular junction is formed when a molecule bridges the gap. This method can fabricate rather stable molecular junctions, however, the yield is low and the exact number of molecules in the junctions is uncertain. The second method forms a molecular junction by separating a scanning tunneling microscope tip from contact with a metal substrate in a solution containing sample molecules. This method, although is not device compatible, can create a large number of molecular junctions over a short period of time, which is ideal for statistical analysis.</description><identifier>ISSN: 0039-6028</identifier><identifier>EISSN: 1879-2758</identifier><identifier>DOI: 10.1016/j.susc.2004.04.061</identifier><identifier>CODEN: SUSCAS</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Electrical transport measurements ; Electrochemical methods ; Exact sciences and technology ; Physics</subject><ispartof>Surface science, 2004-12, Vol.573 (1), p.1-10</ispartof><rights>2004 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-a1c67f15e209aa44c85a5acec20d9a7627040ea691ef60b0d0ce2a15bd1e7a0d3</citedby><cites>FETCH-LOGICAL-c359t-a1c67f15e209aa44c85a5acec20d9a7627040ea691ef60b0d0ce2a15bd1e7a0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16322228$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, X.L.</creatorcontrib><creatorcontrib>He, H.X.</creatorcontrib><creatorcontrib>Xu, B.Q.</creatorcontrib><creatorcontrib>Xiao, X.Y.</creatorcontrib><creatorcontrib>Nagahara, L.A.</creatorcontrib><creatorcontrib>Amlani, I.</creatorcontrib><creatorcontrib>Tsui, R.</creatorcontrib><creatorcontrib>Tao, N.J.</creatorcontrib><title>Measurement of electron transport properties of molecular junctions fabricated by electrochemical and mechanical methods</title><title>Surface science</title><description>We describe two methods to fabricate metal-molecule-metal junctions. The first method starts with a pair of electrodes separated with a molecular scale gap on an oxidized silicon substrate. These electrodes are fabricated by combining electron beam lithography and electrochemical deposition/etching. A molecular junction is formed when a molecule bridges the gap. This method can fabricate rather stable molecular junctions, however, the yield is low and the exact number of molecules in the junctions is uncertain. The second method forms a molecular junction by separating a scanning tunneling microscope tip from contact with a metal substrate in a solution containing sample molecules. This method, although is not device compatible, can create a large number of molecular junctions over a short period of time, which is ideal for statistical analysis.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electrical transport measurements</subject><subject>Electrochemical methods</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><issn>0039-6028</issn><issn>1879-2758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kE9v1DAQxS1EJZbSL8DJF7hlGTuJk0hcUMU_qYgLPVuz9kTrVRIvHgfRb1-HLeLGaKSRR7951ntCvFawV6DMu9OeV3Z7DdDstzbqmdipvhsq3bX9c7EDqIfKgO5fiJfMJyjVDO1O_P5GyGuimZYs4yhpIpdTXGROuPA5pizPKZ4p5UC8AXMsxDphkqd1cTnEheWIhxQcZvLy8PBXwh1pLstJ4uLlTO6Iy5_nTPkYPb8SVyNOTDdP81rcf_r44_ZLdff989fbD3eVq9shV6ic6UbVkoYBsWlc32KLjpwGP2BndAcNEJpB0WjgAB4caVTtwSvqEHx9Ld5edIuNnytxtnNgR9OEC8WVre51PdTQFlBfQJcic6LRnlOYMT1YBXYL2Z7sFrLdQrZbG1WO3jypIxdzYwnNBf53aWpdqi_c-wtHxeqvQMmyC7Q48iGVtKyP4X_fPAK93par</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Li, X.L.</creator><creator>He, H.X.</creator><creator>Xu, B.Q.</creator><creator>Xiao, X.Y.</creator><creator>Nagahara, L.A.</creator><creator>Amlani, I.</creator><creator>Tsui, R.</creator><creator>Tao, N.J.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20041201</creationdate><title>Measurement of electron transport properties of molecular junctions fabricated by electrochemical and mechanical methods</title><author>Li, X.L. ; He, H.X. ; Xu, B.Q. ; Xiao, X.Y. ; Nagahara, L.A. ; Amlani, I. ; Tsui, R. ; Tao, N.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-a1c67f15e209aa44c85a5acec20d9a7627040ea691ef60b0d0ce2a15bd1e7a0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electrical transport measurements</topic><topic>Electrochemical methods</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, X.L.</creatorcontrib><creatorcontrib>He, H.X.</creatorcontrib><creatorcontrib>Xu, B.Q.</creatorcontrib><creatorcontrib>Xiao, X.Y.</creatorcontrib><creatorcontrib>Nagahara, L.A.</creatorcontrib><creatorcontrib>Amlani, I.</creatorcontrib><creatorcontrib>Tsui, R.</creatorcontrib><creatorcontrib>Tao, N.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, X.L.</au><au>He, H.X.</au><au>Xu, B.Q.</au><au>Xiao, X.Y.</au><au>Nagahara, L.A.</au><au>Amlani, I.</au><au>Tsui, R.</au><au>Tao, N.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement of electron transport properties of molecular junctions fabricated by electrochemical and mechanical methods</atitle><jtitle>Surface science</jtitle><date>2004-12-01</date><risdate>2004</risdate><volume>573</volume><issue>1</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0039-6028</issn><eissn>1879-2758</eissn><coden>SUSCAS</coden><abstract>We describe two methods to fabricate metal-molecule-metal junctions. The first method starts with a pair of electrodes separated with a molecular scale gap on an oxidized silicon substrate. These electrodes are fabricated by combining electron beam lithography and electrochemical deposition/etching. A molecular junction is formed when a molecule bridges the gap. This method can fabricate rather stable molecular junctions, however, the yield is low and the exact number of molecules in the junctions is uncertain. The second method forms a molecular junction by separating a scanning tunneling microscope tip from contact with a metal substrate in a solution containing sample molecules. This method, although is not device compatible, can create a large number of molecular junctions over a short period of time, which is ideal for statistical analysis.</abstract><cop>Lausanne</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/j.susc.2004.04.061</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0039-6028
ispartof Surface science, 2004-12, Vol.573 (1), p.1-10
issn 0039-6028
1879-2758
language eng
recordid cdi_proquest_miscellaneous_28239305
source ScienceDirect Freedom Collection
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Electrical transport measurements
Electrochemical methods
Exact sciences and technology
Physics
title Measurement of electron transport properties of molecular junctions fabricated by electrochemical and mechanical methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A53%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20of%20electron%20transport%20properties%20of%20molecular%20junctions%20fabricated%20by%20electrochemical%20and%20mechanical%20methods&rft.jtitle=Surface%20science&rft.au=Li,%20X.L.&rft.date=2004-12-01&rft.volume=573&rft.issue=1&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0039-6028&rft.eissn=1879-2758&rft.coden=SUSCAS&rft_id=info:doi/10.1016/j.susc.2004.04.061&rft_dat=%3Cproquest_cross%3E28239305%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-a1c67f15e209aa44c85a5acec20d9a7627040ea691ef60b0d0ce2a15bd1e7a0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28239305&rft_id=info:pmid/&rfr_iscdi=true