Loading…

Role of [68Ga]Ga-PSMA-11 PET radiomics to predict post-surgical ISUP grade in primary prostate cancer

Purpose The aim of this study is to investigate the role of [ 68 Ga]Ga-PSMA-11 PET radiomics for the prediction of post-surgical International Society of Urological Pathology ( PS ISUP) grade in primary prostate cancer (PCa). Methods This retrospective study included 47 PCa patients who underwent [...

Full description

Saved in:
Bibliographic Details
Published in:European journal of nuclear medicine and molecular imaging 2023-07, Vol.50 (8), p.2548-2560
Main Authors: Ghezzo, Samuele, Mapelli, Paola, Bezzi, Carolina, Samanes Gajate, Ana Maria, Brembilla, Giorgio, Gotuzzo, Irene, Russo, Tommaso, Preza, Erik, Cucchiara, Vito, Ahmed, Naghia, Neri, Ilaria, Mongardi, Sofia, Freschi, Massimo, Briganti, Alberto, De Cobelli, Francesco, Gianolli, Luigi, Scifo, Paola, Picchio, Maria
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-1f486bb9182c040e44ad846c89ed7cb1ff99395210b7a83dddc3647e57c0e0013
cites cdi_FETCH-LOGICAL-c375t-1f486bb9182c040e44ad846c89ed7cb1ff99395210b7a83dddc3647e57c0e0013
container_end_page 2560
container_issue 8
container_start_page 2548
container_title European journal of nuclear medicine and molecular imaging
container_volume 50
creator Ghezzo, Samuele
Mapelli, Paola
Bezzi, Carolina
Samanes Gajate, Ana Maria
Brembilla, Giorgio
Gotuzzo, Irene
Russo, Tommaso
Preza, Erik
Cucchiara, Vito
Ahmed, Naghia
Neri, Ilaria
Mongardi, Sofia
Freschi, Massimo
Briganti, Alberto
De Cobelli, Francesco
Gianolli, Luigi
Scifo, Paola
Picchio, Maria
description Purpose The aim of this study is to investigate the role of [ 68 Ga]Ga-PSMA-11 PET radiomics for the prediction of post-surgical International Society of Urological Pathology ( PS ISUP) grade in primary prostate cancer (PCa). Methods This retrospective study included 47 PCa patients who underwent [ 68 Ga]Ga-PSMA-11 PET at IRCCS San Raffaele Scientific Institute before radical prostatectomy. The whole prostate was manually contoured on PET images and 103 image biomarker standardization initiative (IBSI)-compliant radiomic features (RFs) were extracted. Features were then selected using the minimum redundancy maximum relevance algorithm and a combination of the 4 most relevant RFs was used to train 12 radiomics machine learning models for the prediction of PS ISUP grade: ISUP ≥ 4 vs ISUP  0.05). Conclusion These findings support the role of [ 68 Ga]Ga-PSMA-11 PET radiomics for the accurate and non-invasive prediction of PS ISUP grade.
doi_str_mv 10.1007/s00259-023-06187-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2823989374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825529174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-1f486bb9182c040e44ad846c89ed7cb1ff99395210b7a83dddc3647e57c0e0013</originalsourceid><addsrcrecordid>eNp9kU9LxDAQxYMouv75Ah4k4MVLdNK0TXKUZV0FxcXdPYmENJ0ulW6rTXvw25u1q4IHTxPIb97Mm0fIKYdLDiCvPECUaAaRYJByJZnYISOecs0kKL3785ZwQA69fwXgKlJ6nxyIVAsBMh4RfGoqpE1Bn1M1tS9Ty2bzh2vGOZ1NFrS1edmsS-dp19C3FvPSdfSt8R3zfbsqna3o3Xw5o6sAIi3rwJRr236EGiDbIXW2dtgek73CVh5PtvWILG8mi_Etu3-c3o2v75kTMukYL2KVZpkOazqIAePY5ipOndKYS5fxotBa6CTikEmrRJ7nTqSxxEQ6wOBOHJGLQTfMf-_Rd2ZdeodVZWtsem8iFQmttJBxQM__oK9N39Zhuw2VJJHmX1Q0UC4Y8i0WZuvQcDCbEMwQggkhmK8QjAhNZ1vpPltj_tPyffUAiAHw4ateYfs7-x_ZT9CKj2k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825529174</pqid></control><display><type>article</type><title>Role of [68Ga]Ga-PSMA-11 PET radiomics to predict post-surgical ISUP grade in primary prostate cancer</title><source>Springer Nature</source><creator>Ghezzo, Samuele ; Mapelli, Paola ; Bezzi, Carolina ; Samanes Gajate, Ana Maria ; Brembilla, Giorgio ; Gotuzzo, Irene ; Russo, Tommaso ; Preza, Erik ; Cucchiara, Vito ; Ahmed, Naghia ; Neri, Ilaria ; Mongardi, Sofia ; Freschi, Massimo ; Briganti, Alberto ; De Cobelli, Francesco ; Gianolli, Luigi ; Scifo, Paola ; Picchio, Maria</creator><creatorcontrib>Ghezzo, Samuele ; Mapelli, Paola ; Bezzi, Carolina ; Samanes Gajate, Ana Maria ; Brembilla, Giorgio ; Gotuzzo, Irene ; Russo, Tommaso ; Preza, Erik ; Cucchiara, Vito ; Ahmed, Naghia ; Neri, Ilaria ; Mongardi, Sofia ; Freschi, Massimo ; Briganti, Alberto ; De Cobelli, Francesco ; Gianolli, Luigi ; Scifo, Paola ; Picchio, Maria</creatorcontrib><description>Purpose The aim of this study is to investigate the role of [ 68 Ga]Ga-PSMA-11 PET radiomics for the prediction of post-surgical International Society of Urological Pathology ( PS ISUP) grade in primary prostate cancer (PCa). Methods This retrospective study included 47 PCa patients who underwent [ 68 Ga]Ga-PSMA-11 PET at IRCCS San Raffaele Scientific Institute before radical prostatectomy. The whole prostate was manually contoured on PET images and 103 image biomarker standardization initiative (IBSI)-compliant radiomic features (RFs) were extracted. Features were then selected using the minimum redundancy maximum relevance algorithm and a combination of the 4 most relevant RFs was used to train 12 radiomics machine learning models for the prediction of PS ISUP grade: ISUP ≥ 4 vs ISUP &lt; 4. Machine learning models were validated by means of fivefold repeated cross-validation, and two control models were generated to assess that our findings were not surrogates of spurious associations. Balanced accuracy (bACC) was collected for all generated models and compared with Kruskal–Wallis and Mann–Whitney tests. Sensitivity, specificity, and positive and negative predictive values were also reported to provide a complete overview of models’ performance. The predictions of the best performing model were compared against ISUP grade at biopsy. Results ISUP grade at biopsy was upgraded in 9/47 patients after prostatectomy, resulting in a bACC = 85.9%, SN = 71.9%, SP = 100%, PPV = 100%, and NPV = 62.5%, while the best-performing radiomic model yielded a bACC = 87.6%, SN = 88.6%, SP = 86.7%, PPV = 94%, and NPV = 82.5%. All radiomic models trained with at least 2 RFs (GLSZM—Zone Entropy and Shape—Least Axis Length) outperformed the control models. Conversely, no significant differences were found for radiomic models trained with 2 or more RFs (Mann–Whitney p  &gt; 0.05). Conclusion These findings support the role of [ 68 Ga]Ga-PSMA-11 PET radiomics for the accurate and non-invasive prediction of PS ISUP grade.</description><identifier>ISSN: 1619-7070</identifier><identifier>EISSN: 1619-7089</identifier><identifier>DOI: 10.1007/s00259-023-06187-3</identifier><identifier>PMID: 36933074</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Advanced Image Analyses (Radiomics and Artificial Intelligence) ; Algorithms ; Biomarkers ; Biopsy ; Cardiology ; Entropy ; Gallium Radioisotopes ; Humans ; Imaging ; Learning algorithms ; Machine learning ; Male ; Medical imaging ; Medicine ; Medicine &amp; Public Health ; Nuclear Medicine ; Oncology ; Original Article ; Orthopedics ; Positron emission ; Positron emission tomography ; Positron Emission Tomography Computed Tomography - methods ; Predictions ; Prostate cancer ; Prostatectomy ; Prostatic Neoplasms - diagnostic imaging ; Prostatic Neoplasms - pathology ; Prostatic Neoplasms - surgery ; Radiology ; Radiomics ; Redundancy ; Retrospective Studies ; Standardization</subject><ispartof>European journal of nuclear medicine and molecular imaging, 2023-07, Vol.50 (8), p.2548-2560</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-1f486bb9182c040e44ad846c89ed7cb1ff99395210b7a83dddc3647e57c0e0013</citedby><cites>FETCH-LOGICAL-c375t-1f486bb9182c040e44ad846c89ed7cb1ff99395210b7a83dddc3647e57c0e0013</cites><orcidid>0000-0002-7532-6211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36933074$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghezzo, Samuele</creatorcontrib><creatorcontrib>Mapelli, Paola</creatorcontrib><creatorcontrib>Bezzi, Carolina</creatorcontrib><creatorcontrib>Samanes Gajate, Ana Maria</creatorcontrib><creatorcontrib>Brembilla, Giorgio</creatorcontrib><creatorcontrib>Gotuzzo, Irene</creatorcontrib><creatorcontrib>Russo, Tommaso</creatorcontrib><creatorcontrib>Preza, Erik</creatorcontrib><creatorcontrib>Cucchiara, Vito</creatorcontrib><creatorcontrib>Ahmed, Naghia</creatorcontrib><creatorcontrib>Neri, Ilaria</creatorcontrib><creatorcontrib>Mongardi, Sofia</creatorcontrib><creatorcontrib>Freschi, Massimo</creatorcontrib><creatorcontrib>Briganti, Alberto</creatorcontrib><creatorcontrib>De Cobelli, Francesco</creatorcontrib><creatorcontrib>Gianolli, Luigi</creatorcontrib><creatorcontrib>Scifo, Paola</creatorcontrib><creatorcontrib>Picchio, Maria</creatorcontrib><title>Role of [68Ga]Ga-PSMA-11 PET radiomics to predict post-surgical ISUP grade in primary prostate cancer</title><title>European journal of nuclear medicine and molecular imaging</title><addtitle>Eur J Nucl Med Mol Imaging</addtitle><addtitle>Eur J Nucl Med Mol Imaging</addtitle><description>Purpose The aim of this study is to investigate the role of [ 68 Ga]Ga-PSMA-11 PET radiomics for the prediction of post-surgical International Society of Urological Pathology ( PS ISUP) grade in primary prostate cancer (PCa). Methods This retrospective study included 47 PCa patients who underwent [ 68 Ga]Ga-PSMA-11 PET at IRCCS San Raffaele Scientific Institute before radical prostatectomy. The whole prostate was manually contoured on PET images and 103 image biomarker standardization initiative (IBSI)-compliant radiomic features (RFs) were extracted. Features were then selected using the minimum redundancy maximum relevance algorithm and a combination of the 4 most relevant RFs was used to train 12 radiomics machine learning models for the prediction of PS ISUP grade: ISUP ≥ 4 vs ISUP &lt; 4. Machine learning models were validated by means of fivefold repeated cross-validation, and two control models were generated to assess that our findings were not surrogates of spurious associations. Balanced accuracy (bACC) was collected for all generated models and compared with Kruskal–Wallis and Mann–Whitney tests. Sensitivity, specificity, and positive and negative predictive values were also reported to provide a complete overview of models’ performance. The predictions of the best performing model were compared against ISUP grade at biopsy. Results ISUP grade at biopsy was upgraded in 9/47 patients after prostatectomy, resulting in a bACC = 85.9%, SN = 71.9%, SP = 100%, PPV = 100%, and NPV = 62.5%, while the best-performing radiomic model yielded a bACC = 87.6%, SN = 88.6%, SP = 86.7%, PPV = 94%, and NPV = 82.5%. All radiomic models trained with at least 2 RFs (GLSZM—Zone Entropy and Shape—Least Axis Length) outperformed the control models. Conversely, no significant differences were found for radiomic models trained with 2 or more RFs (Mann–Whitney p  &gt; 0.05). Conclusion These findings support the role of [ 68 Ga]Ga-PSMA-11 PET radiomics for the accurate and non-invasive prediction of PS ISUP grade.</description><subject>Advanced Image Analyses (Radiomics and Artificial Intelligence)</subject><subject>Algorithms</subject><subject>Biomarkers</subject><subject>Biopsy</subject><subject>Cardiology</subject><subject>Entropy</subject><subject>Gallium Radioisotopes</subject><subject>Humans</subject><subject>Imaging</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Nuclear Medicine</subject><subject>Oncology</subject><subject>Original Article</subject><subject>Orthopedics</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Positron Emission Tomography Computed Tomography - methods</subject><subject>Predictions</subject><subject>Prostate cancer</subject><subject>Prostatectomy</subject><subject>Prostatic Neoplasms - diagnostic imaging</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Prostatic Neoplasms - surgery</subject><subject>Radiology</subject><subject>Radiomics</subject><subject>Redundancy</subject><subject>Retrospective Studies</subject><subject>Standardization</subject><issn>1619-7070</issn><issn>1619-7089</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU9LxDAQxYMouv75Ah4k4MVLdNK0TXKUZV0FxcXdPYmENJ0ulW6rTXvw25u1q4IHTxPIb97Mm0fIKYdLDiCvPECUaAaRYJByJZnYISOecs0kKL3785ZwQA69fwXgKlJ6nxyIVAsBMh4RfGoqpE1Bn1M1tS9Ty2bzh2vGOZ1NFrS1edmsS-dp19C3FvPSdfSt8R3zfbsqna3o3Xw5o6sAIi3rwJRr236EGiDbIXW2dtgek73CVh5PtvWILG8mi_Etu3-c3o2v75kTMukYL2KVZpkOazqIAePY5ipOndKYS5fxotBa6CTikEmrRJ7nTqSxxEQ6wOBOHJGLQTfMf-_Rd2ZdeodVZWtsem8iFQmttJBxQM__oK9N39Zhuw2VJJHmX1Q0UC4Y8i0WZuvQcDCbEMwQggkhmK8QjAhNZ1vpPltj_tPyffUAiAHw4ateYfs7-x_ZT9CKj2k</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Ghezzo, Samuele</creator><creator>Mapelli, Paola</creator><creator>Bezzi, Carolina</creator><creator>Samanes Gajate, Ana Maria</creator><creator>Brembilla, Giorgio</creator><creator>Gotuzzo, Irene</creator><creator>Russo, Tommaso</creator><creator>Preza, Erik</creator><creator>Cucchiara, Vito</creator><creator>Ahmed, Naghia</creator><creator>Neri, Ilaria</creator><creator>Mongardi, Sofia</creator><creator>Freschi, Massimo</creator><creator>Briganti, Alberto</creator><creator>De Cobelli, Francesco</creator><creator>Gianolli, Luigi</creator><creator>Scifo, Paola</creator><creator>Picchio, Maria</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7532-6211</orcidid></search><sort><creationdate>20230701</creationdate><title>Role of [68Ga]Ga-PSMA-11 PET radiomics to predict post-surgical ISUP grade in primary prostate cancer</title><author>Ghezzo, Samuele ; Mapelli, Paola ; Bezzi, Carolina ; Samanes Gajate, Ana Maria ; Brembilla, Giorgio ; Gotuzzo, Irene ; Russo, Tommaso ; Preza, Erik ; Cucchiara, Vito ; Ahmed, Naghia ; Neri, Ilaria ; Mongardi, Sofia ; Freschi, Massimo ; Briganti, Alberto ; De Cobelli, Francesco ; Gianolli, Luigi ; Scifo, Paola ; Picchio, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-1f486bb9182c040e44ad846c89ed7cb1ff99395210b7a83dddc3647e57c0e0013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Advanced Image Analyses (Radiomics and Artificial Intelligence)</topic><topic>Algorithms</topic><topic>Biomarkers</topic><topic>Biopsy</topic><topic>Cardiology</topic><topic>Entropy</topic><topic>Gallium Radioisotopes</topic><topic>Humans</topic><topic>Imaging</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Nuclear Medicine</topic><topic>Oncology</topic><topic>Original Article</topic><topic>Orthopedics</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Positron Emission Tomography Computed Tomography - methods</topic><topic>Predictions</topic><topic>Prostate cancer</topic><topic>Prostatectomy</topic><topic>Prostatic Neoplasms - diagnostic imaging</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Prostatic Neoplasms - surgery</topic><topic>Radiology</topic><topic>Radiomics</topic><topic>Redundancy</topic><topic>Retrospective Studies</topic><topic>Standardization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghezzo, Samuele</creatorcontrib><creatorcontrib>Mapelli, Paola</creatorcontrib><creatorcontrib>Bezzi, Carolina</creatorcontrib><creatorcontrib>Samanes Gajate, Ana Maria</creatorcontrib><creatorcontrib>Brembilla, Giorgio</creatorcontrib><creatorcontrib>Gotuzzo, Irene</creatorcontrib><creatorcontrib>Russo, Tommaso</creatorcontrib><creatorcontrib>Preza, Erik</creatorcontrib><creatorcontrib>Cucchiara, Vito</creatorcontrib><creatorcontrib>Ahmed, Naghia</creatorcontrib><creatorcontrib>Neri, Ilaria</creatorcontrib><creatorcontrib>Mongardi, Sofia</creatorcontrib><creatorcontrib>Freschi, Massimo</creatorcontrib><creatorcontrib>Briganti, Alberto</creatorcontrib><creatorcontrib>De Cobelli, Francesco</creatorcontrib><creatorcontrib>Gianolli, Luigi</creatorcontrib><creatorcontrib>Scifo, Paola</creatorcontrib><creatorcontrib>Picchio, Maria</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of nuclear medicine and molecular imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghezzo, Samuele</au><au>Mapelli, Paola</au><au>Bezzi, Carolina</au><au>Samanes Gajate, Ana Maria</au><au>Brembilla, Giorgio</au><au>Gotuzzo, Irene</au><au>Russo, Tommaso</au><au>Preza, Erik</au><au>Cucchiara, Vito</au><au>Ahmed, Naghia</au><au>Neri, Ilaria</au><au>Mongardi, Sofia</au><au>Freschi, Massimo</au><au>Briganti, Alberto</au><au>De Cobelli, Francesco</au><au>Gianolli, Luigi</au><au>Scifo, Paola</au><au>Picchio, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of [68Ga]Ga-PSMA-11 PET radiomics to predict post-surgical ISUP grade in primary prostate cancer</atitle><jtitle>European journal of nuclear medicine and molecular imaging</jtitle><stitle>Eur J Nucl Med Mol Imaging</stitle><addtitle>Eur J Nucl Med Mol Imaging</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>50</volume><issue>8</issue><spage>2548</spage><epage>2560</epage><pages>2548-2560</pages><issn>1619-7070</issn><eissn>1619-7089</eissn><abstract>Purpose The aim of this study is to investigate the role of [ 68 Ga]Ga-PSMA-11 PET radiomics for the prediction of post-surgical International Society of Urological Pathology ( PS ISUP) grade in primary prostate cancer (PCa). Methods This retrospective study included 47 PCa patients who underwent [ 68 Ga]Ga-PSMA-11 PET at IRCCS San Raffaele Scientific Institute before radical prostatectomy. The whole prostate was manually contoured on PET images and 103 image biomarker standardization initiative (IBSI)-compliant radiomic features (RFs) were extracted. Features were then selected using the minimum redundancy maximum relevance algorithm and a combination of the 4 most relevant RFs was used to train 12 radiomics machine learning models for the prediction of PS ISUP grade: ISUP ≥ 4 vs ISUP &lt; 4. Machine learning models were validated by means of fivefold repeated cross-validation, and two control models were generated to assess that our findings were not surrogates of spurious associations. Balanced accuracy (bACC) was collected for all generated models and compared with Kruskal–Wallis and Mann–Whitney tests. Sensitivity, specificity, and positive and negative predictive values were also reported to provide a complete overview of models’ performance. The predictions of the best performing model were compared against ISUP grade at biopsy. Results ISUP grade at biopsy was upgraded in 9/47 patients after prostatectomy, resulting in a bACC = 85.9%, SN = 71.9%, SP = 100%, PPV = 100%, and NPV = 62.5%, while the best-performing radiomic model yielded a bACC = 87.6%, SN = 88.6%, SP = 86.7%, PPV = 94%, and NPV = 82.5%. All radiomic models trained with at least 2 RFs (GLSZM—Zone Entropy and Shape—Least Axis Length) outperformed the control models. Conversely, no significant differences were found for radiomic models trained with 2 or more RFs (Mann–Whitney p  &gt; 0.05). Conclusion These findings support the role of [ 68 Ga]Ga-PSMA-11 PET radiomics for the accurate and non-invasive prediction of PS ISUP grade.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>36933074</pmid><doi>10.1007/s00259-023-06187-3</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7532-6211</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1619-7070
ispartof European journal of nuclear medicine and molecular imaging, 2023-07, Vol.50 (8), p.2548-2560
issn 1619-7070
1619-7089
language eng
recordid cdi_proquest_miscellaneous_2823989374
source Springer Nature
subjects Advanced Image Analyses (Radiomics and Artificial Intelligence)
Algorithms
Biomarkers
Biopsy
Cardiology
Entropy
Gallium Radioisotopes
Humans
Imaging
Learning algorithms
Machine learning
Male
Medical imaging
Medicine
Medicine & Public Health
Nuclear Medicine
Oncology
Original Article
Orthopedics
Positron emission
Positron emission tomography
Positron Emission Tomography Computed Tomography - methods
Predictions
Prostate cancer
Prostatectomy
Prostatic Neoplasms - diagnostic imaging
Prostatic Neoplasms - pathology
Prostatic Neoplasms - surgery
Radiology
Radiomics
Redundancy
Retrospective Studies
Standardization
title Role of [68Ga]Ga-PSMA-11 PET radiomics to predict post-surgical ISUP grade in primary prostate cancer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A32%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20%5B68Ga%5DGa-PSMA-11%20PET%20radiomics%20to%20predict%20post-surgical%20ISUP%20grade%20in%20primary%20prostate%20cancer&rft.jtitle=European%20journal%20of%20nuclear%20medicine%20and%20molecular%20imaging&rft.au=Ghezzo,%20Samuele&rft.date=2023-07-01&rft.volume=50&rft.issue=8&rft.spage=2548&rft.epage=2560&rft.pages=2548-2560&rft.issn=1619-7070&rft.eissn=1619-7089&rft_id=info:doi/10.1007/s00259-023-06187-3&rft_dat=%3Cproquest_cross%3E2825529174%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-1f486bb9182c040e44ad846c89ed7cb1ff99395210b7a83dddc3647e57c0e0013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2825529174&rft_id=info:pmid/36933074&rfr_iscdi=true