Loading…
A mathematical model and optimization of the cathode catalyst layer structure in PEM fuel cells
A spherical flooded-agglomerate model for the cathode catalyst layer of a proton exchange membrane fuel cell, which includes the kinetics of oxygen reduction, at the catalyst|electrolyte interface, proton transport through the polymer electrolyte network, the oxygen diffusion through gas pore, and t...
Saved in:
Published in: | Electrochimica acta 2004-11, Vol.50 (2), p.725-730 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c374t-1afc00f241a4cfa811d7e2cfd10df24df085adce9935bd204b07535911917b823 |
---|---|
cites | cdi_FETCH-LOGICAL-c374t-1afc00f241a4cfa811d7e2cfd10df24df085adce9935bd204b07535911917b823 |
container_end_page | 730 |
container_issue | 2 |
container_start_page | 725 |
container_title | Electrochimica acta |
container_volume | 50 |
creator | Wang, Qianpu Song, Datong Navessin, Titichai Holdcroft, Steven Liu, Zhongsheng |
description | A spherical flooded-agglomerate model for the cathode catalyst layer of a proton exchange membrane fuel cell, which includes the kinetics of oxygen reduction, at the catalyst|electrolyte interface, proton transport through the polymer electrolyte network, the oxygen diffusion through gas pore, and the dissolved oxygen diffusion through electrolyte, is considered. Analytical and numerical solutions are obtained in various control regimes. These are the limits of (i) oxygen diffusion control, (ii) proton conductivity control, and (iii) mixture control. The structure and material parameters, such as porosity, agglomerate size, catalyst layer thickness and proton conductivity, on the performance are investigated under these limits. The model could help to characterize the system properties and operation modes, and to optimize catalyst layer design. |
doi_str_mv | 10.1016/j.electacta.2004.01.113 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28240310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468604007492</els_id><sourcerecordid>28240310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-1afc00f241a4cfa811d7e2cfd10df24df085adce9935bd204b07535911917b823</originalsourceid><addsrcrecordid>eNqFkE1r5DAMhs3Swk4_fkN92b0lleIkTo5Dme4WprSH9mw8tsx6yMesnRSmv74eZmiPBSGBePRKehm7QcgRsL7d5tSRmXSKvAAoc8AcUfxgC2ykyERTtWdsAYAiK-um_skuYtwCgKwlLJha8l5P_yglb3TH-9FSx_Vg-bibfO_fU38c-Oh4grhJaAIOVXf7OPFO7ynwOIXZTHMg7gf-vHrkbk4ihrouXrFzp7tI16d6yV7vVy93f7P105-Hu-U6M0KWU4baGQBXlKhL43SDaCUVxlkEm7rWQVNpa6htRbWxBZQbkJWoWsQW5aYpxCX7fdTdhfH_THFSvY-HC_RA4xxV0RQlCIQEyiNowhhjIKd2wfc67BWCOhiqturTUHUwVAGqZGia_HVaoWOyygU9GB-_xusi3SObxC2PHKV_3zwFFY2nwZD1IekqO_pvd30A0yeQvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28240310</pqid></control><display><type>article</type><title>A mathematical model and optimization of the cathode catalyst layer structure in PEM fuel cells</title><source>ScienceDirect Freedom Collection</source><creator>Wang, Qianpu ; Song, Datong ; Navessin, Titichai ; Holdcroft, Steven ; Liu, Zhongsheng</creator><creatorcontrib>Wang, Qianpu ; Song, Datong ; Navessin, Titichai ; Holdcroft, Steven ; Liu, Zhongsheng</creatorcontrib><description>A spherical flooded-agglomerate model for the cathode catalyst layer of a proton exchange membrane fuel cell, which includes the kinetics of oxygen reduction, at the catalyst|electrolyte interface, proton transport through the polymer electrolyte network, the oxygen diffusion through gas pore, and the dissolved oxygen diffusion through electrolyte, is considered. Analytical and numerical solutions are obtained in various control regimes. These are the limits of (i) oxygen diffusion control, (ii) proton conductivity control, and (iii) mixture control. The structure and material parameters, such as porosity, agglomerate size, catalyst layer thickness and proton conductivity, on the performance are investigated under these limits. The model could help to characterize the system properties and operation modes, and to optimize catalyst layer design.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2004.01.113</identifier><identifier>CODEN: ELCAAV</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Catalyst layer ; Chemistry ; Corrosion ; Corrosion mechanisms ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrochemistry ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; General and physical chemistry ; Mass transport ; Mathematical modeling ; Metals. Metallurgy ; PEM fuel cell</subject><ispartof>Electrochimica acta, 2004-11, Vol.50 (2), p.725-730</ispartof><rights>2004</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-1afc00f241a4cfa811d7e2cfd10df24df085adce9935bd204b07535911917b823</citedby><cites>FETCH-LOGICAL-c374t-1afc00f241a4cfa811d7e2cfd10df24df085adce9935bd204b07535911917b823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16259178$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Qianpu</creatorcontrib><creatorcontrib>Song, Datong</creatorcontrib><creatorcontrib>Navessin, Titichai</creatorcontrib><creatorcontrib>Holdcroft, Steven</creatorcontrib><creatorcontrib>Liu, Zhongsheng</creatorcontrib><title>A mathematical model and optimization of the cathode catalyst layer structure in PEM fuel cells</title><title>Electrochimica acta</title><description>A spherical flooded-agglomerate model for the cathode catalyst layer of a proton exchange membrane fuel cell, which includes the kinetics of oxygen reduction, at the catalyst|electrolyte interface, proton transport through the polymer electrolyte network, the oxygen diffusion through gas pore, and the dissolved oxygen diffusion through electrolyte, is considered. Analytical and numerical solutions are obtained in various control regimes. These are the limits of (i) oxygen diffusion control, (ii) proton conductivity control, and (iii) mixture control. The structure and material parameters, such as porosity, agglomerate size, catalyst layer thickness and proton conductivity, on the performance are investigated under these limits. The model could help to characterize the system properties and operation modes, and to optimize catalyst layer design.</description><subject>Applied sciences</subject><subject>Catalyst layer</subject><subject>Chemistry</subject><subject>Corrosion</subject><subject>Corrosion mechanisms</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrochemistry</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>General and physical chemistry</subject><subject>Mass transport</subject><subject>Mathematical modeling</subject><subject>Metals. Metallurgy</subject><subject>PEM fuel cell</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r5DAMhs3Swk4_fkN92b0lleIkTo5Dme4WprSH9mw8tsx6yMesnRSmv74eZmiPBSGBePRKehm7QcgRsL7d5tSRmXSKvAAoc8AcUfxgC2ykyERTtWdsAYAiK-um_skuYtwCgKwlLJha8l5P_yglb3TH-9FSx_Vg-bibfO_fU38c-Oh4grhJaAIOVXf7OPFO7ynwOIXZTHMg7gf-vHrkbk4ihrouXrFzp7tI16d6yV7vVy93f7P105-Hu-U6M0KWU4baGQBXlKhL43SDaCUVxlkEm7rWQVNpa6htRbWxBZQbkJWoWsQW5aYpxCX7fdTdhfH_THFSvY-HC_RA4xxV0RQlCIQEyiNowhhjIKd2wfc67BWCOhiqturTUHUwVAGqZGia_HVaoWOyygU9GB-_xusi3SObxC2PHKV_3zwFFY2nwZD1IekqO_pvd30A0yeQvg</recordid><startdate>20041130</startdate><enddate>20041130</enddate><creator>Wang, Qianpu</creator><creator>Song, Datong</creator><creator>Navessin, Titichai</creator><creator>Holdcroft, Steven</creator><creator>Liu, Zhongsheng</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20041130</creationdate><title>A mathematical model and optimization of the cathode catalyst layer structure in PEM fuel cells</title><author>Wang, Qianpu ; Song, Datong ; Navessin, Titichai ; Holdcroft, Steven ; Liu, Zhongsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-1afc00f241a4cfa811d7e2cfd10df24df085adce9935bd204b07535911917b823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Catalyst layer</topic><topic>Chemistry</topic><topic>Corrosion</topic><topic>Corrosion mechanisms</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrochemistry</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>General and physical chemistry</topic><topic>Mass transport</topic><topic>Mathematical modeling</topic><topic>Metals. Metallurgy</topic><topic>PEM fuel cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qianpu</creatorcontrib><creatorcontrib>Song, Datong</creatorcontrib><creatorcontrib>Navessin, Titichai</creatorcontrib><creatorcontrib>Holdcroft, Steven</creatorcontrib><creatorcontrib>Liu, Zhongsheng</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qianpu</au><au>Song, Datong</au><au>Navessin, Titichai</au><au>Holdcroft, Steven</au><au>Liu, Zhongsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mathematical model and optimization of the cathode catalyst layer structure in PEM fuel cells</atitle><jtitle>Electrochimica acta</jtitle><date>2004-11-30</date><risdate>2004</risdate><volume>50</volume><issue>2</issue><spage>725</spage><epage>730</epage><pages>725-730</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><coden>ELCAAV</coden><abstract>A spherical flooded-agglomerate model for the cathode catalyst layer of a proton exchange membrane fuel cell, which includes the kinetics of oxygen reduction, at the catalyst|electrolyte interface, proton transport through the polymer electrolyte network, the oxygen diffusion through gas pore, and the dissolved oxygen diffusion through electrolyte, is considered. Analytical and numerical solutions are obtained in various control regimes. These are the limits of (i) oxygen diffusion control, (ii) proton conductivity control, and (iii) mixture control. The structure and material parameters, such as porosity, agglomerate size, catalyst layer thickness and proton conductivity, on the performance are investigated under these limits. The model could help to characterize the system properties and operation modes, and to optimize catalyst layer design.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2004.01.113</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2004-11, Vol.50 (2), p.725-730 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_proquest_miscellaneous_28240310 |
source | ScienceDirect Freedom Collection |
subjects | Applied sciences Catalyst layer Chemistry Corrosion Corrosion mechanisms Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Electrochemistry Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells General and physical chemistry Mass transport Mathematical modeling Metals. Metallurgy PEM fuel cell |
title | A mathematical model and optimization of the cathode catalyst layer structure in PEM fuel cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A52%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mathematical%20model%20and%20optimization%20of%20the%20cathode%20catalyst%20layer%20structure%20in%20PEM%20fuel%20cells&rft.jtitle=Electrochimica%20acta&rft.au=Wang,%20Qianpu&rft.date=2004-11-30&rft.volume=50&rft.issue=2&rft.spage=725&rft.epage=730&rft.pages=725-730&rft.issn=0013-4686&rft.eissn=1873-3859&rft.coden=ELCAAV&rft_id=info:doi/10.1016/j.electacta.2004.01.113&rft_dat=%3Cproquest_cross%3E28240310%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c374t-1afc00f241a4cfa811d7e2cfd10df24df085adce9935bd204b07535911917b823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28240310&rft_id=info:pmid/&rfr_iscdi=true |