Loading…

A mathematical model and optimization of the cathode catalyst layer structure in PEM fuel cells

A spherical flooded-agglomerate model for the cathode catalyst layer of a proton exchange membrane fuel cell, which includes the kinetics of oxygen reduction, at the catalyst|electrolyte interface, proton transport through the polymer electrolyte network, the oxygen diffusion through gas pore, and t...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta 2004-11, Vol.50 (2), p.725-730
Main Authors: Wang, Qianpu, Song, Datong, Navessin, Titichai, Holdcroft, Steven, Liu, Zhongsheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c374t-1afc00f241a4cfa811d7e2cfd10df24df085adce9935bd204b07535911917b823
cites cdi_FETCH-LOGICAL-c374t-1afc00f241a4cfa811d7e2cfd10df24df085adce9935bd204b07535911917b823
container_end_page 730
container_issue 2
container_start_page 725
container_title Electrochimica acta
container_volume 50
creator Wang, Qianpu
Song, Datong
Navessin, Titichai
Holdcroft, Steven
Liu, Zhongsheng
description A spherical flooded-agglomerate model for the cathode catalyst layer of a proton exchange membrane fuel cell, which includes the kinetics of oxygen reduction, at the catalyst|electrolyte interface, proton transport through the polymer electrolyte network, the oxygen diffusion through gas pore, and the dissolved oxygen diffusion through electrolyte, is considered. Analytical and numerical solutions are obtained in various control regimes. These are the limits of (i) oxygen diffusion control, (ii) proton conductivity control, and (iii) mixture control. The structure and material parameters, such as porosity, agglomerate size, catalyst layer thickness and proton conductivity, on the performance are investigated under these limits. The model could help to characterize the system properties and operation modes, and to optimize catalyst layer design.
doi_str_mv 10.1016/j.electacta.2004.01.113
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28240310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468604007492</els_id><sourcerecordid>28240310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-1afc00f241a4cfa811d7e2cfd10df24df085adce9935bd204b07535911917b823</originalsourceid><addsrcrecordid>eNqFkE1r5DAMhs3Swk4_fkN92b0lleIkTo5Dme4WprSH9mw8tsx6yMesnRSmv74eZmiPBSGBePRKehm7QcgRsL7d5tSRmXSKvAAoc8AcUfxgC2ykyERTtWdsAYAiK-um_skuYtwCgKwlLJha8l5P_yglb3TH-9FSx_Vg-bibfO_fU38c-Oh4grhJaAIOVXf7OPFO7ynwOIXZTHMg7gf-vHrkbk4ihrouXrFzp7tI16d6yV7vVy93f7P105-Hu-U6M0KWU4baGQBXlKhL43SDaCUVxlkEm7rWQVNpa6htRbWxBZQbkJWoWsQW5aYpxCX7fdTdhfH_THFSvY-HC_RA4xxV0RQlCIQEyiNowhhjIKd2wfc67BWCOhiqturTUHUwVAGqZGia_HVaoWOyygU9GB-_xusi3SObxC2PHKV_3zwFFY2nwZD1IekqO_pvd30A0yeQvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28240310</pqid></control><display><type>article</type><title>A mathematical model and optimization of the cathode catalyst layer structure in PEM fuel cells</title><source>ScienceDirect Freedom Collection</source><creator>Wang, Qianpu ; Song, Datong ; Navessin, Titichai ; Holdcroft, Steven ; Liu, Zhongsheng</creator><creatorcontrib>Wang, Qianpu ; Song, Datong ; Navessin, Titichai ; Holdcroft, Steven ; Liu, Zhongsheng</creatorcontrib><description>A spherical flooded-agglomerate model for the cathode catalyst layer of a proton exchange membrane fuel cell, which includes the kinetics of oxygen reduction, at the catalyst|electrolyte interface, proton transport through the polymer electrolyte network, the oxygen diffusion through gas pore, and the dissolved oxygen diffusion through electrolyte, is considered. Analytical and numerical solutions are obtained in various control regimes. These are the limits of (i) oxygen diffusion control, (ii) proton conductivity control, and (iii) mixture control. The structure and material parameters, such as porosity, agglomerate size, catalyst layer thickness and proton conductivity, on the performance are investigated under these limits. The model could help to characterize the system properties and operation modes, and to optimize catalyst layer design.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2004.01.113</identifier><identifier>CODEN: ELCAAV</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Catalyst layer ; Chemistry ; Corrosion ; Corrosion mechanisms ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrochemistry ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; General and physical chemistry ; Mass transport ; Mathematical modeling ; Metals. Metallurgy ; PEM fuel cell</subject><ispartof>Electrochimica acta, 2004-11, Vol.50 (2), p.725-730</ispartof><rights>2004</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-1afc00f241a4cfa811d7e2cfd10df24df085adce9935bd204b07535911917b823</citedby><cites>FETCH-LOGICAL-c374t-1afc00f241a4cfa811d7e2cfd10df24df085adce9935bd204b07535911917b823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16259178$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Qianpu</creatorcontrib><creatorcontrib>Song, Datong</creatorcontrib><creatorcontrib>Navessin, Titichai</creatorcontrib><creatorcontrib>Holdcroft, Steven</creatorcontrib><creatorcontrib>Liu, Zhongsheng</creatorcontrib><title>A mathematical model and optimization of the cathode catalyst layer structure in PEM fuel cells</title><title>Electrochimica acta</title><description>A spherical flooded-agglomerate model for the cathode catalyst layer of a proton exchange membrane fuel cell, which includes the kinetics of oxygen reduction, at the catalyst|electrolyte interface, proton transport through the polymer electrolyte network, the oxygen diffusion through gas pore, and the dissolved oxygen diffusion through electrolyte, is considered. Analytical and numerical solutions are obtained in various control regimes. These are the limits of (i) oxygen diffusion control, (ii) proton conductivity control, and (iii) mixture control. The structure and material parameters, such as porosity, agglomerate size, catalyst layer thickness and proton conductivity, on the performance are investigated under these limits. The model could help to characterize the system properties and operation modes, and to optimize catalyst layer design.</description><subject>Applied sciences</subject><subject>Catalyst layer</subject><subject>Chemistry</subject><subject>Corrosion</subject><subject>Corrosion mechanisms</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrochemistry</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>General and physical chemistry</subject><subject>Mass transport</subject><subject>Mathematical modeling</subject><subject>Metals. Metallurgy</subject><subject>PEM fuel cell</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r5DAMhs3Swk4_fkN92b0lleIkTo5Dme4WprSH9mw8tsx6yMesnRSmv74eZmiPBSGBePRKehm7QcgRsL7d5tSRmXSKvAAoc8AcUfxgC2ykyERTtWdsAYAiK-um_skuYtwCgKwlLJha8l5P_yglb3TH-9FSx_Vg-bibfO_fU38c-Oh4grhJaAIOVXf7OPFO7ynwOIXZTHMg7gf-vHrkbk4ihrouXrFzp7tI16d6yV7vVy93f7P105-Hu-U6M0KWU4baGQBXlKhL43SDaCUVxlkEm7rWQVNpa6htRbWxBZQbkJWoWsQW5aYpxCX7fdTdhfH_THFSvY-HC_RA4xxV0RQlCIQEyiNowhhjIKd2wfc67BWCOhiqturTUHUwVAGqZGia_HVaoWOyygU9GB-_xusi3SObxC2PHKV_3zwFFY2nwZD1IekqO_pvd30A0yeQvg</recordid><startdate>20041130</startdate><enddate>20041130</enddate><creator>Wang, Qianpu</creator><creator>Song, Datong</creator><creator>Navessin, Titichai</creator><creator>Holdcroft, Steven</creator><creator>Liu, Zhongsheng</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20041130</creationdate><title>A mathematical model and optimization of the cathode catalyst layer structure in PEM fuel cells</title><author>Wang, Qianpu ; Song, Datong ; Navessin, Titichai ; Holdcroft, Steven ; Liu, Zhongsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-1afc00f241a4cfa811d7e2cfd10df24df085adce9935bd204b07535911917b823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Catalyst layer</topic><topic>Chemistry</topic><topic>Corrosion</topic><topic>Corrosion mechanisms</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrochemistry</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>General and physical chemistry</topic><topic>Mass transport</topic><topic>Mathematical modeling</topic><topic>Metals. Metallurgy</topic><topic>PEM fuel cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qianpu</creatorcontrib><creatorcontrib>Song, Datong</creatorcontrib><creatorcontrib>Navessin, Titichai</creatorcontrib><creatorcontrib>Holdcroft, Steven</creatorcontrib><creatorcontrib>Liu, Zhongsheng</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qianpu</au><au>Song, Datong</au><au>Navessin, Titichai</au><au>Holdcroft, Steven</au><au>Liu, Zhongsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mathematical model and optimization of the cathode catalyst layer structure in PEM fuel cells</atitle><jtitle>Electrochimica acta</jtitle><date>2004-11-30</date><risdate>2004</risdate><volume>50</volume><issue>2</issue><spage>725</spage><epage>730</epage><pages>725-730</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><coden>ELCAAV</coden><abstract>A spherical flooded-agglomerate model for the cathode catalyst layer of a proton exchange membrane fuel cell, which includes the kinetics of oxygen reduction, at the catalyst|electrolyte interface, proton transport through the polymer electrolyte network, the oxygen diffusion through gas pore, and the dissolved oxygen diffusion through electrolyte, is considered. Analytical and numerical solutions are obtained in various control regimes. These are the limits of (i) oxygen diffusion control, (ii) proton conductivity control, and (iii) mixture control. The structure and material parameters, such as porosity, agglomerate size, catalyst layer thickness and proton conductivity, on the performance are investigated under these limits. The model could help to characterize the system properties and operation modes, and to optimize catalyst layer design.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2004.01.113</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2004-11, Vol.50 (2), p.725-730
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_miscellaneous_28240310
source ScienceDirect Freedom Collection
subjects Applied sciences
Catalyst layer
Chemistry
Corrosion
Corrosion mechanisms
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Electrochemistry
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
General and physical chemistry
Mass transport
Mathematical modeling
Metals. Metallurgy
PEM fuel cell
title A mathematical model and optimization of the cathode catalyst layer structure in PEM fuel cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A52%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mathematical%20model%20and%20optimization%20of%20the%20cathode%20catalyst%20layer%20structure%20in%20PEM%20fuel%20cells&rft.jtitle=Electrochimica%20acta&rft.au=Wang,%20Qianpu&rft.date=2004-11-30&rft.volume=50&rft.issue=2&rft.spage=725&rft.epage=730&rft.pages=725-730&rft.issn=0013-4686&rft.eissn=1873-3859&rft.coden=ELCAAV&rft_id=info:doi/10.1016/j.electacta.2004.01.113&rft_dat=%3Cproquest_cross%3E28240310%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c374t-1afc00f241a4cfa811d7e2cfd10df24df085adce9935bd204b07535911917b823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28240310&rft_id=info:pmid/&rfr_iscdi=true