Loading…

Modelling of dispersed bubble and droplet flow at high phase fractions

The present paper describes an Eulerian two-fluid model for the prediction of dispersed two-phase (gas/liquid and liquid/liquid) flow at high volume fractions of the dispersed phase. The model is based on the standard Eulerian approaches for modelling two-phase flow that have hitherto been limited i...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering science 2004-03, Vol.59 (4), p.759-770
Main Authors: Behzadi, A., Issa, R.I., Rusche, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c356t-91d374578e59867ced2724f4433ff7c57fbb65ed5885eaaccdd4954756080d403
cites cdi_FETCH-LOGICAL-c356t-91d374578e59867ced2724f4433ff7c57fbb65ed5885eaaccdd4954756080d403
container_end_page 770
container_issue 4
container_start_page 759
container_title Chemical engineering science
container_volume 59
creator Behzadi, A.
Issa, R.I.
Rusche, H.
description The present paper describes an Eulerian two-fluid model for the prediction of dispersed two-phase (gas/liquid and liquid/liquid) flow at high volume fractions of the dispersed phase. The model is based on the standard Eulerian approaches for modelling two-phase flow that have hitherto been limited in validity to dilute systems. An extension to high phase fractions is made here and this involves two aspects. First, the closure models for inter-phase forces (namely drag and lift) are modified to account for the high concentration of the dispersed phase. Second, a turbulence model based on the k– ε equations for the mixture of the two phases is formulated. This turbulence model is suitable for computations at all phase fraction values and reduces to the equivalent single phase model in the extremes when only one or other of the phases is present. The model uses a response function to link the turbulent fluctuations of the continuous and dispersed phases. The variation of this response function with phase fraction is determined from experimental evidence made available recently. The overall model is applied to the prediction of air/water bubble flow in a pipe with a sudden enlargement where phase fractions can reach 25% and for which experimental data exist. The calculations show that marked improvement in the quality of the predictions, as compared to measurements, is obtained over the available model for dilute systems.
doi_str_mv 10.1016/j.ces.2003.11.018
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28242661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250903005694</els_id><sourcerecordid>28242661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-91d374578e59867ced2724f4433ff7c57fbb65ed5885eaaccdd4954756080d403</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK4-gLdc9NaatEmT4kkWV4UVL3oOaTLZzVKbmnQV394sK3jzNAx8_wzfj9AlJSUltLnZlgZSWRFSl5SWhMojNKNS1AVjhB-jGSGkLSpO2lN0ltI2r0JQMkPL52Ch7_2wxsFh69MIMYHF3a7resB6sNjGMPYwYdeHL6wnvPHrDR43OgF2UZvJhyGdoxOn-wQXv3OO3pb3r4vHYvXy8LS4WxWm5s1UtNTWgnEhgbeyEQZsJSrmGKtr54ThwnVdw8FyKTlobYy1rOVM8IZIYhmp5-j6cHeM4WMHaVLvPpksoAcIu6QqWbGqaWgG6QE0MaQUwakx-ncdvxUlat-Y2qrcmNo3pihVubGcufo9rpPRfZYbjE9_Qc65bOSeuz1wkE0_PUSVjIch2_gIZlI2-H--_AD5xH_1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28242661</pqid></control><display><type>article</type><title>Modelling of dispersed bubble and droplet flow at high phase fractions</title><source>ScienceDirect Journals</source><creator>Behzadi, A. ; Issa, R.I. ; Rusche, H.</creator><creatorcontrib>Behzadi, A. ; Issa, R.I. ; Rusche, H.</creatorcontrib><description>The present paper describes an Eulerian two-fluid model for the prediction of dispersed two-phase (gas/liquid and liquid/liquid) flow at high volume fractions of the dispersed phase. The model is based on the standard Eulerian approaches for modelling two-phase flow that have hitherto been limited in validity to dilute systems. An extension to high phase fractions is made here and this involves two aspects. First, the closure models for inter-phase forces (namely drag and lift) are modified to account for the high concentration of the dispersed phase. Second, a turbulence model based on the k– ε equations for the mixture of the two phases is formulated. This turbulence model is suitable for computations at all phase fraction values and reduces to the equivalent single phase model in the extremes when only one or other of the phases is present. The model uses a response function to link the turbulent fluctuations of the continuous and dispersed phases. The variation of this response function with phase fraction is determined from experimental evidence made available recently. The overall model is applied to the prediction of air/water bubble flow in a pipe with a sudden enlargement where phase fractions can reach 25% and for which experimental data exist. The calculations show that marked improvement in the quality of the predictions, as compared to measurements, is obtained over the available model for dilute systems.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2003.11.018</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Bubbles ; Chemical engineering ; Droplets ; Eulerian model ; Exact sciences and technology ; High phase fraction ; Miscellaneous ; Multiphase flow</subject><ispartof>Chemical engineering science, 2004-03, Vol.59 (4), p.759-770</ispartof><rights>2003 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-91d374578e59867ced2724f4433ff7c57fbb65ed5885eaaccdd4954756080d403</citedby><cites>FETCH-LOGICAL-c356t-91d374578e59867ced2724f4433ff7c57fbb65ed5885eaaccdd4954756080d403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15558688$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Behzadi, A.</creatorcontrib><creatorcontrib>Issa, R.I.</creatorcontrib><creatorcontrib>Rusche, H.</creatorcontrib><title>Modelling of dispersed bubble and droplet flow at high phase fractions</title><title>Chemical engineering science</title><description>The present paper describes an Eulerian two-fluid model for the prediction of dispersed two-phase (gas/liquid and liquid/liquid) flow at high volume fractions of the dispersed phase. The model is based on the standard Eulerian approaches for modelling two-phase flow that have hitherto been limited in validity to dilute systems. An extension to high phase fractions is made here and this involves two aspects. First, the closure models for inter-phase forces (namely drag and lift) are modified to account for the high concentration of the dispersed phase. Second, a turbulence model based on the k– ε equations for the mixture of the two phases is formulated. This turbulence model is suitable for computations at all phase fraction values and reduces to the equivalent single phase model in the extremes when only one or other of the phases is present. The model uses a response function to link the turbulent fluctuations of the continuous and dispersed phases. The variation of this response function with phase fraction is determined from experimental evidence made available recently. The overall model is applied to the prediction of air/water bubble flow in a pipe with a sudden enlargement where phase fractions can reach 25% and for which experimental data exist. The calculations show that marked improvement in the quality of the predictions, as compared to measurements, is obtained over the available model for dilute systems.</description><subject>Applied sciences</subject><subject>Bubbles</subject><subject>Chemical engineering</subject><subject>Droplets</subject><subject>Eulerian model</subject><subject>Exact sciences and technology</subject><subject>High phase fraction</subject><subject>Miscellaneous</subject><subject>Multiphase flow</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK4-gLdc9NaatEmT4kkWV4UVL3oOaTLZzVKbmnQV394sK3jzNAx8_wzfj9AlJSUltLnZlgZSWRFSl5SWhMojNKNS1AVjhB-jGSGkLSpO2lN0ltI2r0JQMkPL52Ch7_2wxsFh69MIMYHF3a7resB6sNjGMPYwYdeHL6wnvPHrDR43OgF2UZvJhyGdoxOn-wQXv3OO3pb3r4vHYvXy8LS4WxWm5s1UtNTWgnEhgbeyEQZsJSrmGKtr54ThwnVdw8FyKTlobYy1rOVM8IZIYhmp5-j6cHeM4WMHaVLvPpksoAcIu6QqWbGqaWgG6QE0MaQUwakx-ncdvxUlat-Y2qrcmNo3pihVubGcufo9rpPRfZYbjE9_Qc65bOSeuz1wkE0_PUSVjIch2_gIZlI2-H--_AD5xH_1</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Behzadi, A.</creator><creator>Issa, R.I.</creator><creator>Rusche, H.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20040301</creationdate><title>Modelling of dispersed bubble and droplet flow at high phase fractions</title><author>Behzadi, A. ; Issa, R.I. ; Rusche, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-91d374578e59867ced2724f4433ff7c57fbb65ed5885eaaccdd4954756080d403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Bubbles</topic><topic>Chemical engineering</topic><topic>Droplets</topic><topic>Eulerian model</topic><topic>Exact sciences and technology</topic><topic>High phase fraction</topic><topic>Miscellaneous</topic><topic>Multiphase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Behzadi, A.</creatorcontrib><creatorcontrib>Issa, R.I.</creatorcontrib><creatorcontrib>Rusche, H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Behzadi, A.</au><au>Issa, R.I.</au><au>Rusche, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling of dispersed bubble and droplet flow at high phase fractions</atitle><jtitle>Chemical engineering science</jtitle><date>2004-03-01</date><risdate>2004</risdate><volume>59</volume><issue>4</issue><spage>759</spage><epage>770</epage><pages>759-770</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>The present paper describes an Eulerian two-fluid model for the prediction of dispersed two-phase (gas/liquid and liquid/liquid) flow at high volume fractions of the dispersed phase. The model is based on the standard Eulerian approaches for modelling two-phase flow that have hitherto been limited in validity to dilute systems. An extension to high phase fractions is made here and this involves two aspects. First, the closure models for inter-phase forces (namely drag and lift) are modified to account for the high concentration of the dispersed phase. Second, a turbulence model based on the k– ε equations for the mixture of the two phases is formulated. This turbulence model is suitable for computations at all phase fraction values and reduces to the equivalent single phase model in the extremes when only one or other of the phases is present. The model uses a response function to link the turbulent fluctuations of the continuous and dispersed phases. The variation of this response function with phase fraction is determined from experimental evidence made available recently. The overall model is applied to the prediction of air/water bubble flow in a pipe with a sudden enlargement where phase fractions can reach 25% and for which experimental data exist. The calculations show that marked improvement in the quality of the predictions, as compared to measurements, is obtained over the available model for dilute systems.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2003.11.018</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-2509
ispartof Chemical engineering science, 2004-03, Vol.59 (4), p.759-770
issn 0009-2509
1873-4405
language eng
recordid cdi_proquest_miscellaneous_28242661
source ScienceDirect Journals
subjects Applied sciences
Bubbles
Chemical engineering
Droplets
Eulerian model
Exact sciences and technology
High phase fraction
Miscellaneous
Multiphase flow
title Modelling of dispersed bubble and droplet flow at high phase fractions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A03%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20of%20dispersed%20bubble%20and%20droplet%20flow%20at%20high%20phase%20fractions&rft.jtitle=Chemical%20engineering%20science&rft.au=Behzadi,%20A.&rft.date=2004-03-01&rft.volume=59&rft.issue=4&rft.spage=759&rft.epage=770&rft.pages=759-770&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/j.ces.2003.11.018&rft_dat=%3Cproquest_cross%3E28242661%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-91d374578e59867ced2724f4433ff7c57fbb65ed5885eaaccdd4954756080d403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28242661&rft_id=info:pmid/&rfr_iscdi=true