Loading…

Artificial intelligence applications in prostate cancer

Artificial intelligence (AI) applications have enabled remarkable advancements in healthcare delivery. These AI tools are often aimed to improve accuracy and efficiency of histopathology assessment and diagnostic imaging interpretation, risk stratification (i.e., prognostication), and prediction of...

Full description

Saved in:
Bibliographic Details
Published in:Prostate cancer and prostatic diseases 2024-03, Vol.27 (1), p.37-45
Main Authors: Baydoun, Atallah, Jia, Angela Y., Zaorsky, Nicholas G., Kashani, Rojano, Rao, Santosh, Shoag, Jonathan E., Vince, Randy A., Bittencourt, Leonardo Kayat, Zuhour, Raed, Price, Alex T., Arsenault, Theodore H., Spratt, Daniel E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-563e97bfd40a7d17ab685f3219f143a0f9799d98a944df274b8cf621df5a38913
cites cdi_FETCH-LOGICAL-c375t-563e97bfd40a7d17ab685f3219f143a0f9799d98a944df274b8cf621df5a38913
container_end_page 45
container_issue 1
container_start_page 37
container_title Prostate cancer and prostatic diseases
container_volume 27
creator Baydoun, Atallah
Jia, Angela Y.
Zaorsky, Nicholas G.
Kashani, Rojano
Rao, Santosh
Shoag, Jonathan E.
Vince, Randy A.
Bittencourt, Leonardo Kayat
Zuhour, Raed
Price, Alex T.
Arsenault, Theodore H.
Spratt, Daniel E.
description Artificial intelligence (AI) applications have enabled remarkable advancements in healthcare delivery. These AI tools are often aimed to improve accuracy and efficiency of histopathology assessment and diagnostic imaging interpretation, risk stratification (i.e., prognostication), and prediction of therapeutic benefit for personalized treatment recommendations. To date, multiple AI algorithms have been explored for prostate cancer to address automation of clinical workflow, integration of data from multiple domains in the decision-making process, and the generation of diagnostic, prognostic, and predictive biomarkers. While many studies remain within the pre-clinical space or lack validation, the last few years have witnessed the emergence of robust AI-based biomarkers validated on thousands of patients, and the prospective deployment of clinically-integrated workflows for automated radiation therapy design. To advance the field forward, multi-institutional and multi-disciplinary collaborations are needed in order to prospectively implement interoperable and accountable AI technology routinely in clinic.
doi_str_mv 10.1038/s41391-023-00684-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2824687891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2824687891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-563e97bfd40a7d17ab685f3219f143a0f9799d98a944df274b8cf621df5a38913</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EolD4AwyoEgtL4Pptj1XFS6rEArPlOHblKk1CnAz8ewwpIDEw2dL57rnnHoQuMNxgoOo2MUw1LoDQAkAoVsABOsFMioILUIf5TwUvpOJkhk5T2gKAxhqO0YxKogWR-ATJZT_EEF209SI2g6_ruPGN8wvbdXV0dohtk7Ky6Po2DXbwC2ez3J-ho2Dr5M_37xy93t-9rB6L9fPD02q5LhyVfMhBqNeyDBUDKyssbSkUD5RgHTCjFoKWWldaWc1YFYhkpXJBEFwFbqnSmM7R9eSb97-NPg1mF5PLMW3j2zEZoggTSk7o1R902459k9MZooliDDTnmSIT5fJBqffBdH3c2f7dYDCftZqpVpNrNV-1GshDl3vrsdz56mfku8cM0AlIWWo2vv_d_Y_tB_htgUc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928440955</pqid></control><display><type>article</type><title>Artificial intelligence applications in prostate cancer</title><source>Springer Link</source><creator>Baydoun, Atallah ; Jia, Angela Y. ; Zaorsky, Nicholas G. ; Kashani, Rojano ; Rao, Santosh ; Shoag, Jonathan E. ; Vince, Randy A. ; Bittencourt, Leonardo Kayat ; Zuhour, Raed ; Price, Alex T. ; Arsenault, Theodore H. ; Spratt, Daniel E.</creator><creatorcontrib>Baydoun, Atallah ; Jia, Angela Y. ; Zaorsky, Nicholas G. ; Kashani, Rojano ; Rao, Santosh ; Shoag, Jonathan E. ; Vince, Randy A. ; Bittencourt, Leonardo Kayat ; Zuhour, Raed ; Price, Alex T. ; Arsenault, Theodore H. ; Spratt, Daniel E.</creatorcontrib><description>Artificial intelligence (AI) applications have enabled remarkable advancements in healthcare delivery. These AI tools are often aimed to improve accuracy and efficiency of histopathology assessment and diagnostic imaging interpretation, risk stratification (i.e., prognostication), and prediction of therapeutic benefit for personalized treatment recommendations. To date, multiple AI algorithms have been explored for prostate cancer to address automation of clinical workflow, integration of data from multiple domains in the decision-making process, and the generation of diagnostic, prognostic, and predictive biomarkers. While many studies remain within the pre-clinical space or lack validation, the last few years have witnessed the emergence of robust AI-based biomarkers validated on thousands of patients, and the prospective deployment of clinically-integrated workflows for automated radiation therapy design. To advance the field forward, multi-institutional and multi-disciplinary collaborations are needed in order to prospectively implement interoperable and accountable AI technology routinely in clinic.</description><identifier>ISSN: 1365-7852</identifier><identifier>EISSN: 1476-5608</identifier><identifier>DOI: 10.1038/s41391-023-00684-0</identifier><identifier>PMID: 37296271</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>692/699/67 ; Algorithms ; Artificial intelligence ; Automation ; Biomarkers ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Decision making ; Histopathology ; Medical imaging ; Medical technology ; Prostate cancer ; Radiation therapy ; Reproductive Medicine ; Review Article ; Workflow</subject><ispartof>Prostate cancer and prostatic diseases, 2024-03, Vol.27 (1), p.37-45</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-563e97bfd40a7d17ab685f3219f143a0f9799d98a944df274b8cf621df5a38913</citedby><cites>FETCH-LOGICAL-c375t-563e97bfd40a7d17ab685f3219f143a0f9799d98a944df274b8cf621df5a38913</cites><orcidid>0000-0002-5973-4741 ; 0000-0001-9175-9626 ; 0000-0001-5537-6644 ; 0000-0003-0244-5583 ; 0000-0002-0812-2614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37296271$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baydoun, Atallah</creatorcontrib><creatorcontrib>Jia, Angela Y.</creatorcontrib><creatorcontrib>Zaorsky, Nicholas G.</creatorcontrib><creatorcontrib>Kashani, Rojano</creatorcontrib><creatorcontrib>Rao, Santosh</creatorcontrib><creatorcontrib>Shoag, Jonathan E.</creatorcontrib><creatorcontrib>Vince, Randy A.</creatorcontrib><creatorcontrib>Bittencourt, Leonardo Kayat</creatorcontrib><creatorcontrib>Zuhour, Raed</creatorcontrib><creatorcontrib>Price, Alex T.</creatorcontrib><creatorcontrib>Arsenault, Theodore H.</creatorcontrib><creatorcontrib>Spratt, Daniel E.</creatorcontrib><title>Artificial intelligence applications in prostate cancer</title><title>Prostate cancer and prostatic diseases</title><addtitle>Prostate Cancer Prostatic Dis</addtitle><addtitle>Prostate Cancer Prostatic Dis</addtitle><description>Artificial intelligence (AI) applications have enabled remarkable advancements in healthcare delivery. These AI tools are often aimed to improve accuracy and efficiency of histopathology assessment and diagnostic imaging interpretation, risk stratification (i.e., prognostication), and prediction of therapeutic benefit for personalized treatment recommendations. To date, multiple AI algorithms have been explored for prostate cancer to address automation of clinical workflow, integration of data from multiple domains in the decision-making process, and the generation of diagnostic, prognostic, and predictive biomarkers. While many studies remain within the pre-clinical space or lack validation, the last few years have witnessed the emergence of robust AI-based biomarkers validated on thousands of patients, and the prospective deployment of clinically-integrated workflows for automated radiation therapy design. To advance the field forward, multi-institutional and multi-disciplinary collaborations are needed in order to prospectively implement interoperable and accountable AI technology routinely in clinic.</description><subject>692/699/67</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Biomarkers</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Decision making</subject><subject>Histopathology</subject><subject>Medical imaging</subject><subject>Medical technology</subject><subject>Prostate cancer</subject><subject>Radiation therapy</subject><subject>Reproductive Medicine</subject><subject>Review Article</subject><subject>Workflow</subject><issn>1365-7852</issn><issn>1476-5608</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EolD4AwyoEgtL4Pptj1XFS6rEArPlOHblKk1CnAz8ewwpIDEw2dL57rnnHoQuMNxgoOo2MUw1LoDQAkAoVsABOsFMioILUIf5TwUvpOJkhk5T2gKAxhqO0YxKogWR-ATJZT_EEF209SI2g6_ruPGN8wvbdXV0dohtk7Ky6Po2DXbwC2ez3J-ho2Dr5M_37xy93t-9rB6L9fPD02q5LhyVfMhBqNeyDBUDKyssbSkUD5RgHTCjFoKWWldaWc1YFYhkpXJBEFwFbqnSmM7R9eSb97-NPg1mF5PLMW3j2zEZoggTSk7o1R902459k9MZooliDDTnmSIT5fJBqffBdH3c2f7dYDCftZqpVpNrNV-1GshDl3vrsdz56mfku8cM0AlIWWo2vv_d_Y_tB_htgUc</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Baydoun, Atallah</creator><creator>Jia, Angela Y.</creator><creator>Zaorsky, Nicholas G.</creator><creator>Kashani, Rojano</creator><creator>Rao, Santosh</creator><creator>Shoag, Jonathan E.</creator><creator>Vince, Randy A.</creator><creator>Bittencourt, Leonardo Kayat</creator><creator>Zuhour, Raed</creator><creator>Price, Alex T.</creator><creator>Arsenault, Theodore H.</creator><creator>Spratt, Daniel E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5973-4741</orcidid><orcidid>https://orcid.org/0000-0001-9175-9626</orcidid><orcidid>https://orcid.org/0000-0001-5537-6644</orcidid><orcidid>https://orcid.org/0000-0003-0244-5583</orcidid><orcidid>https://orcid.org/0000-0002-0812-2614</orcidid></search><sort><creationdate>20240301</creationdate><title>Artificial intelligence applications in prostate cancer</title><author>Baydoun, Atallah ; Jia, Angela Y. ; Zaorsky, Nicholas G. ; Kashani, Rojano ; Rao, Santosh ; Shoag, Jonathan E. ; Vince, Randy A. ; Bittencourt, Leonardo Kayat ; Zuhour, Raed ; Price, Alex T. ; Arsenault, Theodore H. ; Spratt, Daniel E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-563e97bfd40a7d17ab685f3219f143a0f9799d98a944df274b8cf621df5a38913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>692/699/67</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Biomarkers</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Decision making</topic><topic>Histopathology</topic><topic>Medical imaging</topic><topic>Medical technology</topic><topic>Prostate cancer</topic><topic>Radiation therapy</topic><topic>Reproductive Medicine</topic><topic>Review Article</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baydoun, Atallah</creatorcontrib><creatorcontrib>Jia, Angela Y.</creatorcontrib><creatorcontrib>Zaorsky, Nicholas G.</creatorcontrib><creatorcontrib>Kashani, Rojano</creatorcontrib><creatorcontrib>Rao, Santosh</creatorcontrib><creatorcontrib>Shoag, Jonathan E.</creatorcontrib><creatorcontrib>Vince, Randy A.</creatorcontrib><creatorcontrib>Bittencourt, Leonardo Kayat</creatorcontrib><creatorcontrib>Zuhour, Raed</creatorcontrib><creatorcontrib>Price, Alex T.</creatorcontrib><creatorcontrib>Arsenault, Theodore H.</creatorcontrib><creatorcontrib>Spratt, Daniel E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Prostate cancer and prostatic diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baydoun, Atallah</au><au>Jia, Angela Y.</au><au>Zaorsky, Nicholas G.</au><au>Kashani, Rojano</au><au>Rao, Santosh</au><au>Shoag, Jonathan E.</au><au>Vince, Randy A.</au><au>Bittencourt, Leonardo Kayat</au><au>Zuhour, Raed</au><au>Price, Alex T.</au><au>Arsenault, Theodore H.</au><au>Spratt, Daniel E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence applications in prostate cancer</atitle><jtitle>Prostate cancer and prostatic diseases</jtitle><stitle>Prostate Cancer Prostatic Dis</stitle><addtitle>Prostate Cancer Prostatic Dis</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>27</volume><issue>1</issue><spage>37</spage><epage>45</epage><pages>37-45</pages><issn>1365-7852</issn><eissn>1476-5608</eissn><abstract>Artificial intelligence (AI) applications have enabled remarkable advancements in healthcare delivery. These AI tools are often aimed to improve accuracy and efficiency of histopathology assessment and diagnostic imaging interpretation, risk stratification (i.e., prognostication), and prediction of therapeutic benefit for personalized treatment recommendations. To date, multiple AI algorithms have been explored for prostate cancer to address automation of clinical workflow, integration of data from multiple domains in the decision-making process, and the generation of diagnostic, prognostic, and predictive biomarkers. While many studies remain within the pre-clinical space or lack validation, the last few years have witnessed the emergence of robust AI-based biomarkers validated on thousands of patients, and the prospective deployment of clinically-integrated workflows for automated radiation therapy design. To advance the field forward, multi-institutional and multi-disciplinary collaborations are needed in order to prospectively implement interoperable and accountable AI technology routinely in clinic.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37296271</pmid><doi>10.1038/s41391-023-00684-0</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5973-4741</orcidid><orcidid>https://orcid.org/0000-0001-9175-9626</orcidid><orcidid>https://orcid.org/0000-0001-5537-6644</orcidid><orcidid>https://orcid.org/0000-0003-0244-5583</orcidid><orcidid>https://orcid.org/0000-0002-0812-2614</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1365-7852
ispartof Prostate cancer and prostatic diseases, 2024-03, Vol.27 (1), p.37-45
issn 1365-7852
1476-5608
language eng
recordid cdi_proquest_miscellaneous_2824687891
source Springer Link
subjects 692/699/67
Algorithms
Artificial intelligence
Automation
Biomarkers
Biomedical and Life Sciences
Biomedicine
Cancer Research
Decision making
Histopathology
Medical imaging
Medical technology
Prostate cancer
Radiation therapy
Reproductive Medicine
Review Article
Workflow
title Artificial intelligence applications in prostate cancer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T16%3A23%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20applications%20in%20prostate%20cancer&rft.jtitle=Prostate%20cancer%20and%20prostatic%20diseases&rft.au=Baydoun,%20Atallah&rft.date=2024-03-01&rft.volume=27&rft.issue=1&rft.spage=37&rft.epage=45&rft.pages=37-45&rft.issn=1365-7852&rft.eissn=1476-5608&rft_id=info:doi/10.1038/s41391-023-00684-0&rft_dat=%3Cproquest_cross%3E2824687891%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-563e97bfd40a7d17ab685f3219f143a0f9799d98a944df274b8cf621df5a38913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2928440955&rft_id=info:pmid/37296271&rfr_iscdi=true