Loading…
Artificial intelligence applications in prostate cancer
Artificial intelligence (AI) applications have enabled remarkable advancements in healthcare delivery. These AI tools are often aimed to improve accuracy and efficiency of histopathology assessment and diagnostic imaging interpretation, risk stratification (i.e., prognostication), and prediction of...
Saved in:
Published in: | Prostate cancer and prostatic diseases 2024-03, Vol.27 (1), p.37-45 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c375t-563e97bfd40a7d17ab685f3219f143a0f9799d98a944df274b8cf621df5a38913 |
---|---|
cites | cdi_FETCH-LOGICAL-c375t-563e97bfd40a7d17ab685f3219f143a0f9799d98a944df274b8cf621df5a38913 |
container_end_page | 45 |
container_issue | 1 |
container_start_page | 37 |
container_title | Prostate cancer and prostatic diseases |
container_volume | 27 |
creator | Baydoun, Atallah Jia, Angela Y. Zaorsky, Nicholas G. Kashani, Rojano Rao, Santosh Shoag, Jonathan E. Vince, Randy A. Bittencourt, Leonardo Kayat Zuhour, Raed Price, Alex T. Arsenault, Theodore H. Spratt, Daniel E. |
description | Artificial intelligence (AI) applications have enabled remarkable advancements in healthcare delivery. These AI tools are often aimed to improve accuracy and efficiency of histopathology assessment and diagnostic imaging interpretation, risk stratification (i.e., prognostication), and prediction of therapeutic benefit for personalized treatment recommendations. To date, multiple AI algorithms have been explored for prostate cancer to address automation of clinical workflow, integration of data from multiple domains in the decision-making process, and the generation of diagnostic, prognostic, and predictive biomarkers. While many studies remain within the pre-clinical space or lack validation, the last few years have witnessed the emergence of robust AI-based biomarkers validated on thousands of patients, and the prospective deployment of clinically-integrated workflows for automated radiation therapy design. To advance the field forward, multi-institutional and multi-disciplinary collaborations are needed in order to prospectively implement interoperable and accountable AI technology routinely in clinic. |
doi_str_mv | 10.1038/s41391-023-00684-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2824687891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2824687891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-563e97bfd40a7d17ab685f3219f143a0f9799d98a944df274b8cf621df5a38913</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EolD4AwyoEgtL4Pptj1XFS6rEArPlOHblKk1CnAz8ewwpIDEw2dL57rnnHoQuMNxgoOo2MUw1LoDQAkAoVsABOsFMioILUIf5TwUvpOJkhk5T2gKAxhqO0YxKogWR-ATJZT_EEF209SI2g6_ruPGN8wvbdXV0dohtk7Ky6Po2DXbwC2ez3J-ho2Dr5M_37xy93t-9rB6L9fPD02q5LhyVfMhBqNeyDBUDKyssbSkUD5RgHTCjFoKWWldaWc1YFYhkpXJBEFwFbqnSmM7R9eSb97-NPg1mF5PLMW3j2zEZoggTSk7o1R902459k9MZooliDDTnmSIT5fJBqffBdH3c2f7dYDCftZqpVpNrNV-1GshDl3vrsdz56mfku8cM0AlIWWo2vv_d_Y_tB_htgUc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928440955</pqid></control><display><type>article</type><title>Artificial intelligence applications in prostate cancer</title><source>Springer Link</source><creator>Baydoun, Atallah ; Jia, Angela Y. ; Zaorsky, Nicholas G. ; Kashani, Rojano ; Rao, Santosh ; Shoag, Jonathan E. ; Vince, Randy A. ; Bittencourt, Leonardo Kayat ; Zuhour, Raed ; Price, Alex T. ; Arsenault, Theodore H. ; Spratt, Daniel E.</creator><creatorcontrib>Baydoun, Atallah ; Jia, Angela Y. ; Zaorsky, Nicholas G. ; Kashani, Rojano ; Rao, Santosh ; Shoag, Jonathan E. ; Vince, Randy A. ; Bittencourt, Leonardo Kayat ; Zuhour, Raed ; Price, Alex T. ; Arsenault, Theodore H. ; Spratt, Daniel E.</creatorcontrib><description>Artificial intelligence (AI) applications have enabled remarkable advancements in healthcare delivery. These AI tools are often aimed to improve accuracy and efficiency of histopathology assessment and diagnostic imaging interpretation, risk stratification (i.e., prognostication), and prediction of therapeutic benefit for personalized treatment recommendations. To date, multiple AI algorithms have been explored for prostate cancer to address automation of clinical workflow, integration of data from multiple domains in the decision-making process, and the generation of diagnostic, prognostic, and predictive biomarkers. While many studies remain within the pre-clinical space or lack validation, the last few years have witnessed the emergence of robust AI-based biomarkers validated on thousands of patients, and the prospective deployment of clinically-integrated workflows for automated radiation therapy design. To advance the field forward, multi-institutional and multi-disciplinary collaborations are needed in order to prospectively implement interoperable and accountable AI technology routinely in clinic.</description><identifier>ISSN: 1365-7852</identifier><identifier>EISSN: 1476-5608</identifier><identifier>DOI: 10.1038/s41391-023-00684-0</identifier><identifier>PMID: 37296271</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>692/699/67 ; Algorithms ; Artificial intelligence ; Automation ; Biomarkers ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Decision making ; Histopathology ; Medical imaging ; Medical technology ; Prostate cancer ; Radiation therapy ; Reproductive Medicine ; Review Article ; Workflow</subject><ispartof>Prostate cancer and prostatic diseases, 2024-03, Vol.27 (1), p.37-45</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-563e97bfd40a7d17ab685f3219f143a0f9799d98a944df274b8cf621df5a38913</citedby><cites>FETCH-LOGICAL-c375t-563e97bfd40a7d17ab685f3219f143a0f9799d98a944df274b8cf621df5a38913</cites><orcidid>0000-0002-5973-4741 ; 0000-0001-9175-9626 ; 0000-0001-5537-6644 ; 0000-0003-0244-5583 ; 0000-0002-0812-2614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37296271$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baydoun, Atallah</creatorcontrib><creatorcontrib>Jia, Angela Y.</creatorcontrib><creatorcontrib>Zaorsky, Nicholas G.</creatorcontrib><creatorcontrib>Kashani, Rojano</creatorcontrib><creatorcontrib>Rao, Santosh</creatorcontrib><creatorcontrib>Shoag, Jonathan E.</creatorcontrib><creatorcontrib>Vince, Randy A.</creatorcontrib><creatorcontrib>Bittencourt, Leonardo Kayat</creatorcontrib><creatorcontrib>Zuhour, Raed</creatorcontrib><creatorcontrib>Price, Alex T.</creatorcontrib><creatorcontrib>Arsenault, Theodore H.</creatorcontrib><creatorcontrib>Spratt, Daniel E.</creatorcontrib><title>Artificial intelligence applications in prostate cancer</title><title>Prostate cancer and prostatic diseases</title><addtitle>Prostate Cancer Prostatic Dis</addtitle><addtitle>Prostate Cancer Prostatic Dis</addtitle><description>Artificial intelligence (AI) applications have enabled remarkable advancements in healthcare delivery. These AI tools are often aimed to improve accuracy and efficiency of histopathology assessment and diagnostic imaging interpretation, risk stratification (i.e., prognostication), and prediction of therapeutic benefit for personalized treatment recommendations. To date, multiple AI algorithms have been explored for prostate cancer to address automation of clinical workflow, integration of data from multiple domains in the decision-making process, and the generation of diagnostic, prognostic, and predictive biomarkers. While many studies remain within the pre-clinical space or lack validation, the last few years have witnessed the emergence of robust AI-based biomarkers validated on thousands of patients, and the prospective deployment of clinically-integrated workflows for automated radiation therapy design. To advance the field forward, multi-institutional and multi-disciplinary collaborations are needed in order to prospectively implement interoperable and accountable AI technology routinely in clinic.</description><subject>692/699/67</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Biomarkers</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Decision making</subject><subject>Histopathology</subject><subject>Medical imaging</subject><subject>Medical technology</subject><subject>Prostate cancer</subject><subject>Radiation therapy</subject><subject>Reproductive Medicine</subject><subject>Review Article</subject><subject>Workflow</subject><issn>1365-7852</issn><issn>1476-5608</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EolD4AwyoEgtL4Pptj1XFS6rEArPlOHblKk1CnAz8ewwpIDEw2dL57rnnHoQuMNxgoOo2MUw1LoDQAkAoVsABOsFMioILUIf5TwUvpOJkhk5T2gKAxhqO0YxKogWR-ATJZT_EEF209SI2g6_ruPGN8wvbdXV0dohtk7Ky6Po2DXbwC2ez3J-ho2Dr5M_37xy93t-9rB6L9fPD02q5LhyVfMhBqNeyDBUDKyssbSkUD5RgHTCjFoKWWldaWc1YFYhkpXJBEFwFbqnSmM7R9eSb97-NPg1mF5PLMW3j2zEZoggTSk7o1R902459k9MZooliDDTnmSIT5fJBqffBdH3c2f7dYDCftZqpVpNrNV-1GshDl3vrsdz56mfku8cM0AlIWWo2vv_d_Y_tB_htgUc</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Baydoun, Atallah</creator><creator>Jia, Angela Y.</creator><creator>Zaorsky, Nicholas G.</creator><creator>Kashani, Rojano</creator><creator>Rao, Santosh</creator><creator>Shoag, Jonathan E.</creator><creator>Vince, Randy A.</creator><creator>Bittencourt, Leonardo Kayat</creator><creator>Zuhour, Raed</creator><creator>Price, Alex T.</creator><creator>Arsenault, Theodore H.</creator><creator>Spratt, Daniel E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5973-4741</orcidid><orcidid>https://orcid.org/0000-0001-9175-9626</orcidid><orcidid>https://orcid.org/0000-0001-5537-6644</orcidid><orcidid>https://orcid.org/0000-0003-0244-5583</orcidid><orcidid>https://orcid.org/0000-0002-0812-2614</orcidid></search><sort><creationdate>20240301</creationdate><title>Artificial intelligence applications in prostate cancer</title><author>Baydoun, Atallah ; Jia, Angela Y. ; Zaorsky, Nicholas G. ; Kashani, Rojano ; Rao, Santosh ; Shoag, Jonathan E. ; Vince, Randy A. ; Bittencourt, Leonardo Kayat ; Zuhour, Raed ; Price, Alex T. ; Arsenault, Theodore H. ; Spratt, Daniel E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-563e97bfd40a7d17ab685f3219f143a0f9799d98a944df274b8cf621df5a38913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>692/699/67</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Biomarkers</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Decision making</topic><topic>Histopathology</topic><topic>Medical imaging</topic><topic>Medical technology</topic><topic>Prostate cancer</topic><topic>Radiation therapy</topic><topic>Reproductive Medicine</topic><topic>Review Article</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baydoun, Atallah</creatorcontrib><creatorcontrib>Jia, Angela Y.</creatorcontrib><creatorcontrib>Zaorsky, Nicholas G.</creatorcontrib><creatorcontrib>Kashani, Rojano</creatorcontrib><creatorcontrib>Rao, Santosh</creatorcontrib><creatorcontrib>Shoag, Jonathan E.</creatorcontrib><creatorcontrib>Vince, Randy A.</creatorcontrib><creatorcontrib>Bittencourt, Leonardo Kayat</creatorcontrib><creatorcontrib>Zuhour, Raed</creatorcontrib><creatorcontrib>Price, Alex T.</creatorcontrib><creatorcontrib>Arsenault, Theodore H.</creatorcontrib><creatorcontrib>Spratt, Daniel E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Prostate cancer and prostatic diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baydoun, Atallah</au><au>Jia, Angela Y.</au><au>Zaorsky, Nicholas G.</au><au>Kashani, Rojano</au><au>Rao, Santosh</au><au>Shoag, Jonathan E.</au><au>Vince, Randy A.</au><au>Bittencourt, Leonardo Kayat</au><au>Zuhour, Raed</au><au>Price, Alex T.</au><au>Arsenault, Theodore H.</au><au>Spratt, Daniel E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence applications in prostate cancer</atitle><jtitle>Prostate cancer and prostatic diseases</jtitle><stitle>Prostate Cancer Prostatic Dis</stitle><addtitle>Prostate Cancer Prostatic Dis</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>27</volume><issue>1</issue><spage>37</spage><epage>45</epage><pages>37-45</pages><issn>1365-7852</issn><eissn>1476-5608</eissn><abstract>Artificial intelligence (AI) applications have enabled remarkable advancements in healthcare delivery. These AI tools are often aimed to improve accuracy and efficiency of histopathology assessment and diagnostic imaging interpretation, risk stratification (i.e., prognostication), and prediction of therapeutic benefit for personalized treatment recommendations. To date, multiple AI algorithms have been explored for prostate cancer to address automation of clinical workflow, integration of data from multiple domains in the decision-making process, and the generation of diagnostic, prognostic, and predictive biomarkers. While many studies remain within the pre-clinical space or lack validation, the last few years have witnessed the emergence of robust AI-based biomarkers validated on thousands of patients, and the prospective deployment of clinically-integrated workflows for automated radiation therapy design. To advance the field forward, multi-institutional and multi-disciplinary collaborations are needed in order to prospectively implement interoperable and accountable AI technology routinely in clinic.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37296271</pmid><doi>10.1038/s41391-023-00684-0</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5973-4741</orcidid><orcidid>https://orcid.org/0000-0001-9175-9626</orcidid><orcidid>https://orcid.org/0000-0001-5537-6644</orcidid><orcidid>https://orcid.org/0000-0003-0244-5583</orcidid><orcidid>https://orcid.org/0000-0002-0812-2614</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1365-7852 |
ispartof | Prostate cancer and prostatic diseases, 2024-03, Vol.27 (1), p.37-45 |
issn | 1365-7852 1476-5608 |
language | eng |
recordid | cdi_proquest_miscellaneous_2824687891 |
source | Springer Link |
subjects | 692/699/67 Algorithms Artificial intelligence Automation Biomarkers Biomedical and Life Sciences Biomedicine Cancer Research Decision making Histopathology Medical imaging Medical technology Prostate cancer Radiation therapy Reproductive Medicine Review Article Workflow |
title | Artificial intelligence applications in prostate cancer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T16%3A23%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20applications%20in%20prostate%20cancer&rft.jtitle=Prostate%20cancer%20and%20prostatic%20diseases&rft.au=Baydoun,%20Atallah&rft.date=2024-03-01&rft.volume=27&rft.issue=1&rft.spage=37&rft.epage=45&rft.pages=37-45&rft.issn=1365-7852&rft.eissn=1476-5608&rft_id=info:doi/10.1038/s41391-023-00684-0&rft_dat=%3Cproquest_cross%3E2824687891%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-563e97bfd40a7d17ab685f3219f143a0f9799d98a944df274b8cf621df5a38913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2928440955&rft_id=info:pmid/37296271&rfr_iscdi=true |