Loading…
Effective CO2 capture by in-situ nitrogen-doped nanoporous carbon derived from waste antibiotic fermentation residues
It is of great environmental benefit to rationally dispose of and utilize antibiotic fermentation residues. In this study, oxytetracycline fermentation residue was transformed into an in-situ nitrogen-doped nanoporous carbon material with high CO2 adsorption performance by low-temperature pyrolysis...
Saved in:
Published in: | Environmental pollution (1987) 2023-09, Vol.333, p.121972-121972, Article 121972 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c339t-29745d73b4aaa132934a968c0547955ff9d6e637b4747d2b33a3e70b817c524a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c339t-29745d73b4aaa132934a968c0547955ff9d6e637b4747d2b33a3e70b817c524a3 |
container_end_page | 121972 |
container_issue | |
container_start_page | 121972 |
container_title | Environmental pollution (1987) |
container_volume | 333 |
creator | Liu, Peiliang Qin, Shumeng Wang, Jieni Zhang, Shuqin Tian, Yijun Zhang, Fangfang Liu, Chenxiao Cao, Leichang Zhou, Yanmei Wang, Lin Wei, Zhangdong Zhang, Shicheng |
description | It is of great environmental benefit to rationally dispose of and utilize antibiotic fermentation residues. In this study, oxytetracycline fermentation residue was transformed into an in-situ nitrogen-doped nanoporous carbon material with high CO2 adsorption performance by low-temperature pyrolysis pre-carbonization coupled with pyrolytic activation. The results indicated the activation under mild conditions (600 °C, KOH/OC = 2) was able to increase micropores and reduce the loss of in-situ nitrogen content. The developed microporous structure was beneficial for the filling adsorption of CO2, and the in-situ nitrogen doping in a high oxygen-containing carbon framework also strengthened the electrostatic adsorption with CO2. The maximum CO2 adsorption reached 4.38 mmol g−1 and 6.40 mmol g−1 at 25 °C and 0 °C (1 bar), respectively, with high CO2/N2 selectivity (32/1) and excellent reusability (decreased by 4% after 5 cycles). This study demonstrates the good application potential of oxytetracycline fermentation residue as in-situ nitrogen-doped nanoporous carbon materials for CO2 capture.
[Display omitted]
•Antibiotic fermentation residues were transformed into nanoporous carbon materials.•The best-performing nanoporous carbon has a high nitrogen content of 4.83 wt%.•The maximum CO2 adsorption capacity reached 4.38 mmol g−1 with CO2/N2 of 32.•Micropores and content/specie of nitrogen groups are critical factors in CO2 capture. |
doi_str_mv | 10.1016/j.envpol.2023.121972 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2824691406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0269749123009740</els_id><sourcerecordid>2824691406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-29745d73b4aaa132934a968c0547955ff9d6e637b4747d2b33a3e70b817c524a3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWB__wEWWbqbmNZNmI0jxBUI3ug6Z5I6ktMmYZCr-e1PGtau7-c65nA-hG0qWlNDubruEcBjjbskI40vKqJLsBC3oSvKmE0ycogVhnWqkUPQcXeS8JYQIzvkCTY_DALb4A-D1hmFrxjIlwP0P9qHJvkw4-JLiJ4TGxREcDibEMaY45QqnPgbsINW4w0OKe_xtcgFsQvG9j8VbPEDaQyim-IomyN5NkK_Q2WB2Ga7_7iX6eHp8X780b5vn1_XDW2M5V6VhSorWSd4LYwzlTHFhVLeypBVSte0wKNdBx2UvpJCO9ZwbDpL0Kypty4Thl-h27h1T_Kp_i977bGG3MwHqAs1WTHSKCtJVVMyoTTHnBIMek9-b9KMp0UfLeqtny_poWc-Wa-x-jkGdcfCQdLYeggXnU_WqXfT_F_wCo3uJQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824691406</pqid></control><display><type>article</type><title>Effective CO2 capture by in-situ nitrogen-doped nanoporous carbon derived from waste antibiotic fermentation residues</title><source>ScienceDirect Freedom Collection</source><creator>Liu, Peiliang ; Qin, Shumeng ; Wang, Jieni ; Zhang, Shuqin ; Tian, Yijun ; Zhang, Fangfang ; Liu, Chenxiao ; Cao, Leichang ; Zhou, Yanmei ; Wang, Lin ; Wei, Zhangdong ; Zhang, Shicheng</creator><creatorcontrib>Liu, Peiliang ; Qin, Shumeng ; Wang, Jieni ; Zhang, Shuqin ; Tian, Yijun ; Zhang, Fangfang ; Liu, Chenxiao ; Cao, Leichang ; Zhou, Yanmei ; Wang, Lin ; Wei, Zhangdong ; Zhang, Shicheng</creatorcontrib><description>It is of great environmental benefit to rationally dispose of and utilize antibiotic fermentation residues. In this study, oxytetracycline fermentation residue was transformed into an in-situ nitrogen-doped nanoporous carbon material with high CO2 adsorption performance by low-temperature pyrolysis pre-carbonization coupled with pyrolytic activation. The results indicated the activation under mild conditions (600 °C, KOH/OC = 2) was able to increase micropores and reduce the loss of in-situ nitrogen content. The developed microporous structure was beneficial for the filling adsorption of CO2, and the in-situ nitrogen doping in a high oxygen-containing carbon framework also strengthened the electrostatic adsorption with CO2. The maximum CO2 adsorption reached 4.38 mmol g−1 and 6.40 mmol g−1 at 25 °C and 0 °C (1 bar), respectively, with high CO2/N2 selectivity (32/1) and excellent reusability (decreased by 4% after 5 cycles). This study demonstrates the good application potential of oxytetracycline fermentation residue as in-situ nitrogen-doped nanoporous carbon materials for CO2 capture.
[Display omitted]
•Antibiotic fermentation residues were transformed into nanoporous carbon materials.•The best-performing nanoporous carbon has a high nitrogen content of 4.83 wt%.•The maximum CO2 adsorption capacity reached 4.38 mmol g−1 with CO2/N2 of 32.•Micropores and content/specie of nitrogen groups are critical factors in CO2 capture.</description><identifier>ISSN: 0269-7491</identifier><identifier>EISSN: 1873-6424</identifier><identifier>DOI: 10.1016/j.envpol.2023.121972</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Antibiotic fermentation residues ; CO2 adsorption ; N doping ; Nanoporous carbon</subject><ispartof>Environmental pollution (1987), 2023-09, Vol.333, p.121972-121972, Article 121972</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-29745d73b4aaa132934a968c0547955ff9d6e637b4747d2b33a3e70b817c524a3</citedby><cites>FETCH-LOGICAL-c339t-29745d73b4aaa132934a968c0547955ff9d6e637b4747d2b33a3e70b817c524a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Peiliang</creatorcontrib><creatorcontrib>Qin, Shumeng</creatorcontrib><creatorcontrib>Wang, Jieni</creatorcontrib><creatorcontrib>Zhang, Shuqin</creatorcontrib><creatorcontrib>Tian, Yijun</creatorcontrib><creatorcontrib>Zhang, Fangfang</creatorcontrib><creatorcontrib>Liu, Chenxiao</creatorcontrib><creatorcontrib>Cao, Leichang</creatorcontrib><creatorcontrib>Zhou, Yanmei</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Wei, Zhangdong</creatorcontrib><creatorcontrib>Zhang, Shicheng</creatorcontrib><title>Effective CO2 capture by in-situ nitrogen-doped nanoporous carbon derived from waste antibiotic fermentation residues</title><title>Environmental pollution (1987)</title><description>It is of great environmental benefit to rationally dispose of and utilize antibiotic fermentation residues. In this study, oxytetracycline fermentation residue was transformed into an in-situ nitrogen-doped nanoporous carbon material with high CO2 adsorption performance by low-temperature pyrolysis pre-carbonization coupled with pyrolytic activation. The results indicated the activation under mild conditions (600 °C, KOH/OC = 2) was able to increase micropores and reduce the loss of in-situ nitrogen content. The developed microporous structure was beneficial for the filling adsorption of CO2, and the in-situ nitrogen doping in a high oxygen-containing carbon framework also strengthened the electrostatic adsorption with CO2. The maximum CO2 adsorption reached 4.38 mmol g−1 and 6.40 mmol g−1 at 25 °C and 0 °C (1 bar), respectively, with high CO2/N2 selectivity (32/1) and excellent reusability (decreased by 4% after 5 cycles). This study demonstrates the good application potential of oxytetracycline fermentation residue as in-situ nitrogen-doped nanoporous carbon materials for CO2 capture.
[Display omitted]
•Antibiotic fermentation residues were transformed into nanoporous carbon materials.•The best-performing nanoporous carbon has a high nitrogen content of 4.83 wt%.•The maximum CO2 adsorption capacity reached 4.38 mmol g−1 with CO2/N2 of 32.•Micropores and content/specie of nitrogen groups are critical factors in CO2 capture.</description><subject>Antibiotic fermentation residues</subject><subject>CO2 adsorption</subject><subject>N doping</subject><subject>Nanoporous carbon</subject><issn>0269-7491</issn><issn>1873-6424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWB__wEWWbqbmNZNmI0jxBUI3ug6Z5I6ktMmYZCr-e1PGtau7-c65nA-hG0qWlNDubruEcBjjbskI40vKqJLsBC3oSvKmE0ycogVhnWqkUPQcXeS8JYQIzvkCTY_DALb4A-D1hmFrxjIlwP0P9qHJvkw4-JLiJ4TGxREcDibEMaY45QqnPgbsINW4w0OKe_xtcgFsQvG9j8VbPEDaQyim-IomyN5NkK_Q2WB2Ga7_7iX6eHp8X780b5vn1_XDW2M5V6VhSorWSd4LYwzlTHFhVLeypBVSte0wKNdBx2UvpJCO9ZwbDpL0Kypty4Thl-h27h1T_Kp_i977bGG3MwHqAs1WTHSKCtJVVMyoTTHnBIMek9-b9KMp0UfLeqtny_poWc-Wa-x-jkGdcfCQdLYeggXnU_WqXfT_F_wCo3uJQQ</recordid><startdate>20230915</startdate><enddate>20230915</enddate><creator>Liu, Peiliang</creator><creator>Qin, Shumeng</creator><creator>Wang, Jieni</creator><creator>Zhang, Shuqin</creator><creator>Tian, Yijun</creator><creator>Zhang, Fangfang</creator><creator>Liu, Chenxiao</creator><creator>Cao, Leichang</creator><creator>Zhou, Yanmei</creator><creator>Wang, Lin</creator><creator>Wei, Zhangdong</creator><creator>Zhang, Shicheng</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20230915</creationdate><title>Effective CO2 capture by in-situ nitrogen-doped nanoporous carbon derived from waste antibiotic fermentation residues</title><author>Liu, Peiliang ; Qin, Shumeng ; Wang, Jieni ; Zhang, Shuqin ; Tian, Yijun ; Zhang, Fangfang ; Liu, Chenxiao ; Cao, Leichang ; Zhou, Yanmei ; Wang, Lin ; Wei, Zhangdong ; Zhang, Shicheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-29745d73b4aaa132934a968c0547955ff9d6e637b4747d2b33a3e70b817c524a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antibiotic fermentation residues</topic><topic>CO2 adsorption</topic><topic>N doping</topic><topic>Nanoporous carbon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Peiliang</creatorcontrib><creatorcontrib>Qin, Shumeng</creatorcontrib><creatorcontrib>Wang, Jieni</creatorcontrib><creatorcontrib>Zhang, Shuqin</creatorcontrib><creatorcontrib>Tian, Yijun</creatorcontrib><creatorcontrib>Zhang, Fangfang</creatorcontrib><creatorcontrib>Liu, Chenxiao</creatorcontrib><creatorcontrib>Cao, Leichang</creatorcontrib><creatorcontrib>Zhou, Yanmei</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Wei, Zhangdong</creatorcontrib><creatorcontrib>Zhang, Shicheng</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental pollution (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Peiliang</au><au>Qin, Shumeng</au><au>Wang, Jieni</au><au>Zhang, Shuqin</au><au>Tian, Yijun</au><au>Zhang, Fangfang</au><au>Liu, Chenxiao</au><au>Cao, Leichang</au><au>Zhou, Yanmei</au><au>Wang, Lin</au><au>Wei, Zhangdong</au><au>Zhang, Shicheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective CO2 capture by in-situ nitrogen-doped nanoporous carbon derived from waste antibiotic fermentation residues</atitle><jtitle>Environmental pollution (1987)</jtitle><date>2023-09-15</date><risdate>2023</risdate><volume>333</volume><spage>121972</spage><epage>121972</epage><pages>121972-121972</pages><artnum>121972</artnum><issn>0269-7491</issn><eissn>1873-6424</eissn><abstract>It is of great environmental benefit to rationally dispose of and utilize antibiotic fermentation residues. In this study, oxytetracycline fermentation residue was transformed into an in-situ nitrogen-doped nanoporous carbon material with high CO2 adsorption performance by low-temperature pyrolysis pre-carbonization coupled with pyrolytic activation. The results indicated the activation under mild conditions (600 °C, KOH/OC = 2) was able to increase micropores and reduce the loss of in-situ nitrogen content. The developed microporous structure was beneficial for the filling adsorption of CO2, and the in-situ nitrogen doping in a high oxygen-containing carbon framework also strengthened the electrostatic adsorption with CO2. The maximum CO2 adsorption reached 4.38 mmol g−1 and 6.40 mmol g−1 at 25 °C and 0 °C (1 bar), respectively, with high CO2/N2 selectivity (32/1) and excellent reusability (decreased by 4% after 5 cycles). This study demonstrates the good application potential of oxytetracycline fermentation residue as in-situ nitrogen-doped nanoporous carbon materials for CO2 capture.
[Display omitted]
•Antibiotic fermentation residues were transformed into nanoporous carbon materials.•The best-performing nanoporous carbon has a high nitrogen content of 4.83 wt%.•The maximum CO2 adsorption capacity reached 4.38 mmol g−1 with CO2/N2 of 32.•Micropores and content/specie of nitrogen groups are critical factors in CO2 capture.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.envpol.2023.121972</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0269-7491 |
ispartof | Environmental pollution (1987), 2023-09, Vol.333, p.121972-121972, Article 121972 |
issn | 0269-7491 1873-6424 |
language | eng |
recordid | cdi_proquest_miscellaneous_2824691406 |
source | ScienceDirect Freedom Collection |
subjects | Antibiotic fermentation residues CO2 adsorption N doping Nanoporous carbon |
title | Effective CO2 capture by in-situ nitrogen-doped nanoporous carbon derived from waste antibiotic fermentation residues |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20CO2%20capture%20by%20in-situ%20nitrogen-doped%20nanoporous%20carbon%20derived%20from%20waste%20antibiotic%20fermentation%20residues&rft.jtitle=Environmental%20pollution%20(1987)&rft.au=Liu,%20Peiliang&rft.date=2023-09-15&rft.volume=333&rft.spage=121972&rft.epage=121972&rft.pages=121972-121972&rft.artnum=121972&rft.issn=0269-7491&rft.eissn=1873-6424&rft_id=info:doi/10.1016/j.envpol.2023.121972&rft_dat=%3Cproquest_cross%3E2824691406%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-29745d73b4aaa132934a968c0547955ff9d6e637b4747d2b33a3e70b817c524a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2824691406&rft_id=info:pmid/&rfr_iscdi=true |