Loading…

Effective CO2 capture by in-situ nitrogen-doped nanoporous carbon derived from waste antibiotic fermentation residues

It is of great environmental benefit to rationally dispose of and utilize antibiotic fermentation residues. In this study, oxytetracycline fermentation residue was transformed into an in-situ nitrogen-doped nanoporous carbon material with high CO2 adsorption performance by low-temperature pyrolysis...

Full description

Saved in:
Bibliographic Details
Published in:Environmental pollution (1987) 2023-09, Vol.333, p.121972-121972, Article 121972
Main Authors: Liu, Peiliang, Qin, Shumeng, Wang, Jieni, Zhang, Shuqin, Tian, Yijun, Zhang, Fangfang, Liu, Chenxiao, Cao, Leichang, Zhou, Yanmei, Wang, Lin, Wei, Zhangdong, Zhang, Shicheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c339t-29745d73b4aaa132934a968c0547955ff9d6e637b4747d2b33a3e70b817c524a3
cites cdi_FETCH-LOGICAL-c339t-29745d73b4aaa132934a968c0547955ff9d6e637b4747d2b33a3e70b817c524a3
container_end_page 121972
container_issue
container_start_page 121972
container_title Environmental pollution (1987)
container_volume 333
creator Liu, Peiliang
Qin, Shumeng
Wang, Jieni
Zhang, Shuqin
Tian, Yijun
Zhang, Fangfang
Liu, Chenxiao
Cao, Leichang
Zhou, Yanmei
Wang, Lin
Wei, Zhangdong
Zhang, Shicheng
description It is of great environmental benefit to rationally dispose of and utilize antibiotic fermentation residues. In this study, oxytetracycline fermentation residue was transformed into an in-situ nitrogen-doped nanoporous carbon material with high CO2 adsorption performance by low-temperature pyrolysis pre-carbonization coupled with pyrolytic activation. The results indicated the activation under mild conditions (600 °C, KOH/OC = 2) was able to increase micropores and reduce the loss of in-situ nitrogen content. The developed microporous structure was beneficial for the filling adsorption of CO2, and the in-situ nitrogen doping in a high oxygen-containing carbon framework also strengthened the electrostatic adsorption with CO2. The maximum CO2 adsorption reached 4.38 mmol g−1 and 6.40 mmol g−1 at 25 °C and 0 °C (1 bar), respectively, with high CO2/N2 selectivity (32/1) and excellent reusability (decreased by 4% after 5 cycles). This study demonstrates the good application potential of oxytetracycline fermentation residue as in-situ nitrogen-doped nanoporous carbon materials for CO2 capture. [Display omitted] •Antibiotic fermentation residues were transformed into nanoporous carbon materials.•The best-performing nanoporous carbon has a high nitrogen content of 4.83 wt%.•The maximum CO2 adsorption capacity reached 4.38 mmol g−1 with CO2/N2 of 32.•Micropores and content/specie of nitrogen groups are critical factors in CO2 capture.
doi_str_mv 10.1016/j.envpol.2023.121972
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2824691406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0269749123009740</els_id><sourcerecordid>2824691406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-29745d73b4aaa132934a968c0547955ff9d6e637b4747d2b33a3e70b817c524a3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWB__wEWWbqbmNZNmI0jxBUI3ug6Z5I6ktMmYZCr-e1PGtau7-c65nA-hG0qWlNDubruEcBjjbskI40vKqJLsBC3oSvKmE0ycogVhnWqkUPQcXeS8JYQIzvkCTY_DALb4A-D1hmFrxjIlwP0P9qHJvkw4-JLiJ4TGxREcDibEMaY45QqnPgbsINW4w0OKe_xtcgFsQvG9j8VbPEDaQyim-IomyN5NkK_Q2WB2Ga7_7iX6eHp8X780b5vn1_XDW2M5V6VhSorWSd4LYwzlTHFhVLeypBVSte0wKNdBx2UvpJCO9ZwbDpL0Kypty4Thl-h27h1T_Kp_i977bGG3MwHqAs1WTHSKCtJVVMyoTTHnBIMek9-b9KMp0UfLeqtny_poWc-Wa-x-jkGdcfCQdLYeggXnU_WqXfT_F_wCo3uJQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824691406</pqid></control><display><type>article</type><title>Effective CO2 capture by in-situ nitrogen-doped nanoporous carbon derived from waste antibiotic fermentation residues</title><source>ScienceDirect Freedom Collection</source><creator>Liu, Peiliang ; Qin, Shumeng ; Wang, Jieni ; Zhang, Shuqin ; Tian, Yijun ; Zhang, Fangfang ; Liu, Chenxiao ; Cao, Leichang ; Zhou, Yanmei ; Wang, Lin ; Wei, Zhangdong ; Zhang, Shicheng</creator><creatorcontrib>Liu, Peiliang ; Qin, Shumeng ; Wang, Jieni ; Zhang, Shuqin ; Tian, Yijun ; Zhang, Fangfang ; Liu, Chenxiao ; Cao, Leichang ; Zhou, Yanmei ; Wang, Lin ; Wei, Zhangdong ; Zhang, Shicheng</creatorcontrib><description>It is of great environmental benefit to rationally dispose of and utilize antibiotic fermentation residues. In this study, oxytetracycline fermentation residue was transformed into an in-situ nitrogen-doped nanoporous carbon material with high CO2 adsorption performance by low-temperature pyrolysis pre-carbonization coupled with pyrolytic activation. The results indicated the activation under mild conditions (600 °C, KOH/OC = 2) was able to increase micropores and reduce the loss of in-situ nitrogen content. The developed microporous structure was beneficial for the filling adsorption of CO2, and the in-situ nitrogen doping in a high oxygen-containing carbon framework also strengthened the electrostatic adsorption with CO2. The maximum CO2 adsorption reached 4.38 mmol g−1 and 6.40 mmol g−1 at 25 °C and 0 °C (1 bar), respectively, with high CO2/N2 selectivity (32/1) and excellent reusability (decreased by 4% after 5 cycles). This study demonstrates the good application potential of oxytetracycline fermentation residue as in-situ nitrogen-doped nanoporous carbon materials for CO2 capture. [Display omitted] •Antibiotic fermentation residues were transformed into nanoporous carbon materials.•The best-performing nanoporous carbon has a high nitrogen content of 4.83 wt%.•The maximum CO2 adsorption capacity reached 4.38 mmol g−1 with CO2/N2 of 32.•Micropores and content/specie of nitrogen groups are critical factors in CO2 capture.</description><identifier>ISSN: 0269-7491</identifier><identifier>EISSN: 1873-6424</identifier><identifier>DOI: 10.1016/j.envpol.2023.121972</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Antibiotic fermentation residues ; CO2 adsorption ; N doping ; Nanoporous carbon</subject><ispartof>Environmental pollution (1987), 2023-09, Vol.333, p.121972-121972, Article 121972</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-29745d73b4aaa132934a968c0547955ff9d6e637b4747d2b33a3e70b817c524a3</citedby><cites>FETCH-LOGICAL-c339t-29745d73b4aaa132934a968c0547955ff9d6e637b4747d2b33a3e70b817c524a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Peiliang</creatorcontrib><creatorcontrib>Qin, Shumeng</creatorcontrib><creatorcontrib>Wang, Jieni</creatorcontrib><creatorcontrib>Zhang, Shuqin</creatorcontrib><creatorcontrib>Tian, Yijun</creatorcontrib><creatorcontrib>Zhang, Fangfang</creatorcontrib><creatorcontrib>Liu, Chenxiao</creatorcontrib><creatorcontrib>Cao, Leichang</creatorcontrib><creatorcontrib>Zhou, Yanmei</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Wei, Zhangdong</creatorcontrib><creatorcontrib>Zhang, Shicheng</creatorcontrib><title>Effective CO2 capture by in-situ nitrogen-doped nanoporous carbon derived from waste antibiotic fermentation residues</title><title>Environmental pollution (1987)</title><description>It is of great environmental benefit to rationally dispose of and utilize antibiotic fermentation residues. In this study, oxytetracycline fermentation residue was transformed into an in-situ nitrogen-doped nanoporous carbon material with high CO2 adsorption performance by low-temperature pyrolysis pre-carbonization coupled with pyrolytic activation. The results indicated the activation under mild conditions (600 °C, KOH/OC = 2) was able to increase micropores and reduce the loss of in-situ nitrogen content. The developed microporous structure was beneficial for the filling adsorption of CO2, and the in-situ nitrogen doping in a high oxygen-containing carbon framework also strengthened the electrostatic adsorption with CO2. The maximum CO2 adsorption reached 4.38 mmol g−1 and 6.40 mmol g−1 at 25 °C and 0 °C (1 bar), respectively, with high CO2/N2 selectivity (32/1) and excellent reusability (decreased by 4% after 5 cycles). This study demonstrates the good application potential of oxytetracycline fermentation residue as in-situ nitrogen-doped nanoporous carbon materials for CO2 capture. [Display omitted] •Antibiotic fermentation residues were transformed into nanoporous carbon materials.•The best-performing nanoporous carbon has a high nitrogen content of 4.83 wt%.•The maximum CO2 adsorption capacity reached 4.38 mmol g−1 with CO2/N2 of 32.•Micropores and content/specie of nitrogen groups are critical factors in CO2 capture.</description><subject>Antibiotic fermentation residues</subject><subject>CO2 adsorption</subject><subject>N doping</subject><subject>Nanoporous carbon</subject><issn>0269-7491</issn><issn>1873-6424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWB__wEWWbqbmNZNmI0jxBUI3ug6Z5I6ktMmYZCr-e1PGtau7-c65nA-hG0qWlNDubruEcBjjbskI40vKqJLsBC3oSvKmE0ycogVhnWqkUPQcXeS8JYQIzvkCTY_DALb4A-D1hmFrxjIlwP0P9qHJvkw4-JLiJ4TGxREcDibEMaY45QqnPgbsINW4w0OKe_xtcgFsQvG9j8VbPEDaQyim-IomyN5NkK_Q2WB2Ga7_7iX6eHp8X780b5vn1_XDW2M5V6VhSorWSd4LYwzlTHFhVLeypBVSte0wKNdBx2UvpJCO9ZwbDpL0Kypty4Thl-h27h1T_Kp_i977bGG3MwHqAs1WTHSKCtJVVMyoTTHnBIMek9-b9KMp0UfLeqtny_poWc-Wa-x-jkGdcfCQdLYeggXnU_WqXfT_F_wCo3uJQQ</recordid><startdate>20230915</startdate><enddate>20230915</enddate><creator>Liu, Peiliang</creator><creator>Qin, Shumeng</creator><creator>Wang, Jieni</creator><creator>Zhang, Shuqin</creator><creator>Tian, Yijun</creator><creator>Zhang, Fangfang</creator><creator>Liu, Chenxiao</creator><creator>Cao, Leichang</creator><creator>Zhou, Yanmei</creator><creator>Wang, Lin</creator><creator>Wei, Zhangdong</creator><creator>Zhang, Shicheng</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20230915</creationdate><title>Effective CO2 capture by in-situ nitrogen-doped nanoporous carbon derived from waste antibiotic fermentation residues</title><author>Liu, Peiliang ; Qin, Shumeng ; Wang, Jieni ; Zhang, Shuqin ; Tian, Yijun ; Zhang, Fangfang ; Liu, Chenxiao ; Cao, Leichang ; Zhou, Yanmei ; Wang, Lin ; Wei, Zhangdong ; Zhang, Shicheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-29745d73b4aaa132934a968c0547955ff9d6e637b4747d2b33a3e70b817c524a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antibiotic fermentation residues</topic><topic>CO2 adsorption</topic><topic>N doping</topic><topic>Nanoporous carbon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Peiliang</creatorcontrib><creatorcontrib>Qin, Shumeng</creatorcontrib><creatorcontrib>Wang, Jieni</creatorcontrib><creatorcontrib>Zhang, Shuqin</creatorcontrib><creatorcontrib>Tian, Yijun</creatorcontrib><creatorcontrib>Zhang, Fangfang</creatorcontrib><creatorcontrib>Liu, Chenxiao</creatorcontrib><creatorcontrib>Cao, Leichang</creatorcontrib><creatorcontrib>Zhou, Yanmei</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Wei, Zhangdong</creatorcontrib><creatorcontrib>Zhang, Shicheng</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental pollution (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Peiliang</au><au>Qin, Shumeng</au><au>Wang, Jieni</au><au>Zhang, Shuqin</au><au>Tian, Yijun</au><au>Zhang, Fangfang</au><au>Liu, Chenxiao</au><au>Cao, Leichang</au><au>Zhou, Yanmei</au><au>Wang, Lin</au><au>Wei, Zhangdong</au><au>Zhang, Shicheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective CO2 capture by in-situ nitrogen-doped nanoporous carbon derived from waste antibiotic fermentation residues</atitle><jtitle>Environmental pollution (1987)</jtitle><date>2023-09-15</date><risdate>2023</risdate><volume>333</volume><spage>121972</spage><epage>121972</epage><pages>121972-121972</pages><artnum>121972</artnum><issn>0269-7491</issn><eissn>1873-6424</eissn><abstract>It is of great environmental benefit to rationally dispose of and utilize antibiotic fermentation residues. In this study, oxytetracycline fermentation residue was transformed into an in-situ nitrogen-doped nanoporous carbon material with high CO2 adsorption performance by low-temperature pyrolysis pre-carbonization coupled with pyrolytic activation. The results indicated the activation under mild conditions (600 °C, KOH/OC = 2) was able to increase micropores and reduce the loss of in-situ nitrogen content. The developed microporous structure was beneficial for the filling adsorption of CO2, and the in-situ nitrogen doping in a high oxygen-containing carbon framework also strengthened the electrostatic adsorption with CO2. The maximum CO2 adsorption reached 4.38 mmol g−1 and 6.40 mmol g−1 at 25 °C and 0 °C (1 bar), respectively, with high CO2/N2 selectivity (32/1) and excellent reusability (decreased by 4% after 5 cycles). This study demonstrates the good application potential of oxytetracycline fermentation residue as in-situ nitrogen-doped nanoporous carbon materials for CO2 capture. [Display omitted] •Antibiotic fermentation residues were transformed into nanoporous carbon materials.•The best-performing nanoporous carbon has a high nitrogen content of 4.83 wt%.•The maximum CO2 adsorption capacity reached 4.38 mmol g−1 with CO2/N2 of 32.•Micropores and content/specie of nitrogen groups are critical factors in CO2 capture.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.envpol.2023.121972</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0269-7491
ispartof Environmental pollution (1987), 2023-09, Vol.333, p.121972-121972, Article 121972
issn 0269-7491
1873-6424
language eng
recordid cdi_proquest_miscellaneous_2824691406
source ScienceDirect Freedom Collection
subjects Antibiotic fermentation residues
CO2 adsorption
N doping
Nanoporous carbon
title Effective CO2 capture by in-situ nitrogen-doped nanoporous carbon derived from waste antibiotic fermentation residues
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20CO2%20capture%20by%20in-situ%20nitrogen-doped%20nanoporous%20carbon%20derived%20from%20waste%20antibiotic%20fermentation%20residues&rft.jtitle=Environmental%20pollution%20(1987)&rft.au=Liu,%20Peiliang&rft.date=2023-09-15&rft.volume=333&rft.spage=121972&rft.epage=121972&rft.pages=121972-121972&rft.artnum=121972&rft.issn=0269-7491&rft.eissn=1873-6424&rft_id=info:doi/10.1016/j.envpol.2023.121972&rft_dat=%3Cproquest_cross%3E2824691406%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-29745d73b4aaa132934a968c0547955ff9d6e637b4747d2b33a3e70b817c524a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2824691406&rft_id=info:pmid/&rfr_iscdi=true