Loading…

Differentiation of discrete multidimensional signals

We describe the design of finite-size linear-phase separable kernels for differentiation of discrete multidimensional signals. The problem is formulated as an optimization of the rotation-invariance of the gradient operator, which results in a simultaneous constraint on a set of one-dimensional low-...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2004-04, Vol.13 (4), p.496-508
Main Authors: Farid, H., Simoncelli, E.P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We describe the design of finite-size linear-phase separable kernels for differentiation of discrete multidimensional signals. The problem is formulated as an optimization of the rotation-invariance of the gradient operator, which results in a simultaneous constraint on a set of one-dimensional low-pass prefilter and differentiator filters up to the desired order. We also develop extensions of this formulation to both higher dimensions and higher order directional derivatives. We develop a numerical procedure for optimizing the constraint, and demonstrate its use in constructing a set of example filters. The resulting filters are significantly more accurate than those commonly used in the image and multidimensional signal processing literature.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2004.823819