Loading…
Differentiation of discrete multidimensional signals
We describe the design of finite-size linear-phase separable kernels for differentiation of discrete multidimensional signals. The problem is formulated as an optimization of the rotation-invariance of the gradient operator, which results in a simultaneous constraint on a set of one-dimensional low-...
Saved in:
Published in: | IEEE transactions on image processing 2004-04, Vol.13 (4), p.496-508 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We describe the design of finite-size linear-phase separable kernels for differentiation of discrete multidimensional signals. The problem is formulated as an optimization of the rotation-invariance of the gradient operator, which results in a simultaneous constraint on a set of one-dimensional low-pass prefilter and differentiator filters up to the desired order. We also develop extensions of this formulation to both higher dimensions and higher order directional derivatives. We develop a numerical procedure for optimizing the constraint, and demonstrate its use in constructing a set of example filters. The resulting filters are significantly more accurate than those commonly used in the image and multidimensional signal processing literature. |
---|---|
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/TIP.2004.823819 |