Loading…
Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction
In this paper, the dyadic discrete wavelet transform is proposed for feature extraction from a high-dimensional data space. The wavelet's inherent multiresolutional properties are discussed in terms related to multispectral and hyperspectral remote sensing. Furthermore, various wavelet-based fe...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2002-10, Vol.40 (10), p.2331-2338 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c510t-b2f11cfcad9f380ddd28f241928ca5c62ca8f06556919a9eaab7bf6b1dcfdcf63 |
---|---|
cites | cdi_FETCH-LOGICAL-c510t-b2f11cfcad9f380ddd28f241928ca5c62ca8f06556919a9eaab7bf6b1dcfdcf63 |
container_end_page | 2338 |
container_issue | 10 |
container_start_page | 2331 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 40 |
creator | Bruce, L.M. Koger, C.H. Jiang Li |
description | In this paper, the dyadic discrete wavelet transform is proposed for feature extraction from a high-dimensional data space. The wavelet's inherent multiresolutional properties are discussed in terms related to multispectral and hyperspectral remote sensing. Furthermore, various wavelet-based features are applied to the problem of automatic classification of specific ground vegetations from hyperspectral signatures. The wavelet transform features are evaluated using an automated statistical classifier. The system is tested using hyperspectral data for various agricultural applications. The experimental results demonstrate the promising discriminant capability of the wavelet-based features. The automated classification system consistently provides over 95% and 80% classification accuracy for endmember and mixed-signature applications, respectively. When compared to conventional feature extraction methods, the wavelet transform approach is shown to significantly increase the overall classification accuracy. |
doi_str_mv | 10.1109/TGRS.2002.804721 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28249071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1105919</ieee_id><sourcerecordid>1671417348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-b2f11cfcad9f380ddd28f241928ca5c62ca8f06556919a9eaab7bf6b1dcfdcf63</originalsourceid><addsrcrecordid>eNqNkUGLFDEQhYMoOK7eBS9BULz0WJVO0slRVl2FBUHXc0inK9pLT_eYpNX592achQUPKgSKpL56vNRj7DHCFhHsy6uLj5-2AkBsDchO4B22QaVMA1rKu2wDaHUjjBX32YOcrwFQKuw2rH897mjO4zL7aSwHnmhYQ6lXvkT-9bCnlPcUSvITH3zxfM3j_IUPYw6JCvEf_jtNVHgF5hyXtOORfFkTcfpZ334rPWT3op8yPbqpZ-zz2zdX5--ayw8X789fXTZBIZSmFxExxOAHG1sDwzAIE4VEK0zwKmgRvImgldIWrbfkfd_1Ufc4hFiPbs_Y85PuPi3fVsrF7apNmiY_07JmV38PnVXwH6CQFcV_gx3YToOt4Iu_gqg7lNi10lT06R_o9bKmuv3sjJHVXYtHh3CCQlpyThTdPo07nw4OwR3jdse43TFud4q7jjy70fU5-CnWQMKYb-dkayzqtnJPTtxIRLdtBFXX2v4CSV61QA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884503310</pqid></control><display><type>article</type><title>Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction</title><source>IEEE Xplore (Online service)</source><creator>Bruce, L.M. ; Koger, C.H. ; Jiang Li</creator><creatorcontrib>Bruce, L.M. ; Koger, C.H. ; Jiang Li</creatorcontrib><description>In this paper, the dyadic discrete wavelet transform is proposed for feature extraction from a high-dimensional data space. The wavelet's inherent multiresolutional properties are discussed in terms related to multispectral and hyperspectral remote sensing. Furthermore, various wavelet-based features are applied to the problem of automatic classification of specific ground vegetations from hyperspectral signatures. The wavelet transform features are evaluated using an automated statistical classifier. The system is tested using hyperspectral data for various agricultural applications. The experimental results demonstrate the promising discriminant capability of the wavelet-based features. The automated classification system consistently provides over 95% and 80% classification accuracy for endmember and mixed-signature applications, respectively. When compared to conventional feature extraction methods, the wavelet transform approach is shown to significantly increase the overall classification accuracy.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2002.804721</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied geophysics ; Automated ; Classification ; Data analysis ; Discrete Wavelet Transform ; Discrete wavelet transforms ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Feature extraction ; Grounds ; Hyperspectral imaging ; Hyperspectral sensors ; Internal geophysics ; Remote sensing ; Signal resolution ; Signatures ; Training data ; Wavelet analysis ; Wavelet transforms</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2002-10, Vol.40 (10), p.2331-2338</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-b2f11cfcad9f380ddd28f241928ca5c62ca8f06556919a9eaab7bf6b1dcfdcf63</citedby><cites>FETCH-LOGICAL-c510t-b2f11cfcad9f380ddd28f241928ca5c62ca8f06556919a9eaab7bf6b1dcfdcf63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1105919$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14389163$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bruce, L.M.</creatorcontrib><creatorcontrib>Koger, C.H.</creatorcontrib><creatorcontrib>Jiang Li</creatorcontrib><title>Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>In this paper, the dyadic discrete wavelet transform is proposed for feature extraction from a high-dimensional data space. The wavelet's inherent multiresolutional properties are discussed in terms related to multispectral and hyperspectral remote sensing. Furthermore, various wavelet-based features are applied to the problem of automatic classification of specific ground vegetations from hyperspectral signatures. The wavelet transform features are evaluated using an automated statistical classifier. The system is tested using hyperspectral data for various agricultural applications. The experimental results demonstrate the promising discriminant capability of the wavelet-based features. The automated classification system consistently provides over 95% and 80% classification accuracy for endmember and mixed-signature applications, respectively. When compared to conventional feature extraction methods, the wavelet transform approach is shown to significantly increase the overall classification accuracy.</description><subject>Applied geophysics</subject><subject>Automated</subject><subject>Classification</subject><subject>Data analysis</subject><subject>Discrete Wavelet Transform</subject><subject>Discrete wavelet transforms</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Grounds</subject><subject>Hyperspectral imaging</subject><subject>Hyperspectral sensors</subject><subject>Internal geophysics</subject><subject>Remote sensing</subject><subject>Signal resolution</subject><subject>Signatures</subject><subject>Training data</subject><subject>Wavelet analysis</subject><subject>Wavelet transforms</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqNkUGLFDEQhYMoOK7eBS9BULz0WJVO0slRVl2FBUHXc0inK9pLT_eYpNX592achQUPKgSKpL56vNRj7DHCFhHsy6uLj5-2AkBsDchO4B22QaVMA1rKu2wDaHUjjBX32YOcrwFQKuw2rH897mjO4zL7aSwHnmhYQ6lXvkT-9bCnlPcUSvITH3zxfM3j_IUPYw6JCvEf_jtNVHgF5hyXtOORfFkTcfpZ334rPWT3op8yPbqpZ-zz2zdX5--ayw8X789fXTZBIZSmFxExxOAHG1sDwzAIE4VEK0zwKmgRvImgldIWrbfkfd_1Ufc4hFiPbs_Y85PuPi3fVsrF7apNmiY_07JmV38PnVXwH6CQFcV_gx3YToOt4Iu_gqg7lNi10lT06R_o9bKmuv3sjJHVXYtHh3CCQlpyThTdPo07nw4OwR3jdse43TFud4q7jjy70fU5-CnWQMKYb-dkayzqtnJPTtxIRLdtBFXX2v4CSV61QA</recordid><startdate>20021001</startdate><enddate>20021001</enddate><creator>Bruce, L.M.</creator><creator>Koger, C.H.</creator><creator>Jiang Li</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20021001</creationdate><title>Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction</title><author>Bruce, L.M. ; Koger, C.H. ; Jiang Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-b2f11cfcad9f380ddd28f241928ca5c62ca8f06556919a9eaab7bf6b1dcfdcf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied geophysics</topic><topic>Automated</topic><topic>Classification</topic><topic>Data analysis</topic><topic>Discrete Wavelet Transform</topic><topic>Discrete wavelet transforms</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Grounds</topic><topic>Hyperspectral imaging</topic><topic>Hyperspectral sensors</topic><topic>Internal geophysics</topic><topic>Remote sensing</topic><topic>Signal resolution</topic><topic>Signatures</topic><topic>Training data</topic><topic>Wavelet analysis</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruce, L.M.</creatorcontrib><creatorcontrib>Koger, C.H.</creatorcontrib><creatorcontrib>Jiang Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruce, L.M.</au><au>Koger, C.H.</au><au>Jiang Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2002-10-01</date><risdate>2002</risdate><volume>40</volume><issue>10</issue><spage>2331</spage><epage>2338</epage><pages>2331-2338</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>In this paper, the dyadic discrete wavelet transform is proposed for feature extraction from a high-dimensional data space. The wavelet's inherent multiresolutional properties are discussed in terms related to multispectral and hyperspectral remote sensing. Furthermore, various wavelet-based features are applied to the problem of automatic classification of specific ground vegetations from hyperspectral signatures. The wavelet transform features are evaluated using an automated statistical classifier. The system is tested using hyperspectral data for various agricultural applications. The experimental results demonstrate the promising discriminant capability of the wavelet-based features. The automated classification system consistently provides over 95% and 80% classification accuracy for endmember and mixed-signature applications, respectively. When compared to conventional feature extraction methods, the wavelet transform approach is shown to significantly increase the overall classification accuracy.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2002.804721</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2002-10, Vol.40 (10), p.2331-2338 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_miscellaneous_28249071 |
source | IEEE Xplore (Online service) |
subjects | Applied geophysics Automated Classification Data analysis Discrete Wavelet Transform Discrete wavelet transforms Earth sciences Earth, ocean, space Exact sciences and technology Feature extraction Grounds Hyperspectral imaging Hyperspectral sensors Internal geophysics Remote sensing Signal resolution Signatures Training data Wavelet analysis Wavelet transforms |
title | Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A03%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dimensionality%20reduction%20of%20hyperspectral%20data%20using%20discrete%20wavelet%20transform%20feature%20extraction&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Bruce,%20L.M.&rft.date=2002-10-01&rft.volume=40&rft.issue=10&rft.spage=2331&rft.epage=2338&rft.pages=2331-2338&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2002.804721&rft_dat=%3Cproquest_cross%3E1671417348%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c510t-b2f11cfcad9f380ddd28f241928ca5c62ca8f06556919a9eaab7bf6b1dcfdcf63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884503310&rft_id=info:pmid/&rft_ieee_id=1105919&rfr_iscdi=true |