Loading…

Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction

In this paper, the dyadic discrete wavelet transform is proposed for feature extraction from a high-dimensional data space. The wavelet's inherent multiresolutional properties are discussed in terms related to multispectral and hyperspectral remote sensing. Furthermore, various wavelet-based fe...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2002-10, Vol.40 (10), p.2331-2338
Main Authors: Bruce, L.M., Koger, C.H., Jiang Li
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c510t-b2f11cfcad9f380ddd28f241928ca5c62ca8f06556919a9eaab7bf6b1dcfdcf63
cites cdi_FETCH-LOGICAL-c510t-b2f11cfcad9f380ddd28f241928ca5c62ca8f06556919a9eaab7bf6b1dcfdcf63
container_end_page 2338
container_issue 10
container_start_page 2331
container_title IEEE transactions on geoscience and remote sensing
container_volume 40
creator Bruce, L.M.
Koger, C.H.
Jiang Li
description In this paper, the dyadic discrete wavelet transform is proposed for feature extraction from a high-dimensional data space. The wavelet's inherent multiresolutional properties are discussed in terms related to multispectral and hyperspectral remote sensing. Furthermore, various wavelet-based features are applied to the problem of automatic classification of specific ground vegetations from hyperspectral signatures. The wavelet transform features are evaluated using an automated statistical classifier. The system is tested using hyperspectral data for various agricultural applications. The experimental results demonstrate the promising discriminant capability of the wavelet-based features. The automated classification system consistently provides over 95% and 80% classification accuracy for endmember and mixed-signature applications, respectively. When compared to conventional feature extraction methods, the wavelet transform approach is shown to significantly increase the overall classification accuracy.
doi_str_mv 10.1109/TGRS.2002.804721
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28249071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1105919</ieee_id><sourcerecordid>1671417348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-b2f11cfcad9f380ddd28f241928ca5c62ca8f06556919a9eaab7bf6b1dcfdcf63</originalsourceid><addsrcrecordid>eNqNkUGLFDEQhYMoOK7eBS9BULz0WJVO0slRVl2FBUHXc0inK9pLT_eYpNX592achQUPKgSKpL56vNRj7DHCFhHsy6uLj5-2AkBsDchO4B22QaVMA1rKu2wDaHUjjBX32YOcrwFQKuw2rH897mjO4zL7aSwHnmhYQ6lXvkT-9bCnlPcUSvITH3zxfM3j_IUPYw6JCvEf_jtNVHgF5hyXtOORfFkTcfpZ334rPWT3op8yPbqpZ-zz2zdX5--ayw8X789fXTZBIZSmFxExxOAHG1sDwzAIE4VEK0zwKmgRvImgldIWrbfkfd_1Ufc4hFiPbs_Y85PuPi3fVsrF7apNmiY_07JmV38PnVXwH6CQFcV_gx3YToOt4Iu_gqg7lNi10lT06R_o9bKmuv3sjJHVXYtHh3CCQlpyThTdPo07nw4OwR3jdse43TFud4q7jjy70fU5-CnWQMKYb-dkayzqtnJPTtxIRLdtBFXX2v4CSV61QA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884503310</pqid></control><display><type>article</type><title>Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction</title><source>IEEE Xplore (Online service)</source><creator>Bruce, L.M. ; Koger, C.H. ; Jiang Li</creator><creatorcontrib>Bruce, L.M. ; Koger, C.H. ; Jiang Li</creatorcontrib><description>In this paper, the dyadic discrete wavelet transform is proposed for feature extraction from a high-dimensional data space. The wavelet's inherent multiresolutional properties are discussed in terms related to multispectral and hyperspectral remote sensing. Furthermore, various wavelet-based features are applied to the problem of automatic classification of specific ground vegetations from hyperspectral signatures. The wavelet transform features are evaluated using an automated statistical classifier. The system is tested using hyperspectral data for various agricultural applications. The experimental results demonstrate the promising discriminant capability of the wavelet-based features. The automated classification system consistently provides over 95% and 80% classification accuracy for endmember and mixed-signature applications, respectively. When compared to conventional feature extraction methods, the wavelet transform approach is shown to significantly increase the overall classification accuracy.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2002.804721</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied geophysics ; Automated ; Classification ; Data analysis ; Discrete Wavelet Transform ; Discrete wavelet transforms ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Feature extraction ; Grounds ; Hyperspectral imaging ; Hyperspectral sensors ; Internal geophysics ; Remote sensing ; Signal resolution ; Signatures ; Training data ; Wavelet analysis ; Wavelet transforms</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2002-10, Vol.40 (10), p.2331-2338</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-b2f11cfcad9f380ddd28f241928ca5c62ca8f06556919a9eaab7bf6b1dcfdcf63</citedby><cites>FETCH-LOGICAL-c510t-b2f11cfcad9f380ddd28f241928ca5c62ca8f06556919a9eaab7bf6b1dcfdcf63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1105919$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14389163$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bruce, L.M.</creatorcontrib><creatorcontrib>Koger, C.H.</creatorcontrib><creatorcontrib>Jiang Li</creatorcontrib><title>Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>In this paper, the dyadic discrete wavelet transform is proposed for feature extraction from a high-dimensional data space. The wavelet's inherent multiresolutional properties are discussed in terms related to multispectral and hyperspectral remote sensing. Furthermore, various wavelet-based features are applied to the problem of automatic classification of specific ground vegetations from hyperspectral signatures. The wavelet transform features are evaluated using an automated statistical classifier. The system is tested using hyperspectral data for various agricultural applications. The experimental results demonstrate the promising discriminant capability of the wavelet-based features. The automated classification system consistently provides over 95% and 80% classification accuracy for endmember and mixed-signature applications, respectively. When compared to conventional feature extraction methods, the wavelet transform approach is shown to significantly increase the overall classification accuracy.</description><subject>Applied geophysics</subject><subject>Automated</subject><subject>Classification</subject><subject>Data analysis</subject><subject>Discrete Wavelet Transform</subject><subject>Discrete wavelet transforms</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Grounds</subject><subject>Hyperspectral imaging</subject><subject>Hyperspectral sensors</subject><subject>Internal geophysics</subject><subject>Remote sensing</subject><subject>Signal resolution</subject><subject>Signatures</subject><subject>Training data</subject><subject>Wavelet analysis</subject><subject>Wavelet transforms</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqNkUGLFDEQhYMoOK7eBS9BULz0WJVO0slRVl2FBUHXc0inK9pLT_eYpNX592achQUPKgSKpL56vNRj7DHCFhHsy6uLj5-2AkBsDchO4B22QaVMA1rKu2wDaHUjjBX32YOcrwFQKuw2rH897mjO4zL7aSwHnmhYQ6lXvkT-9bCnlPcUSvITH3zxfM3j_IUPYw6JCvEf_jtNVHgF5hyXtOORfFkTcfpZ334rPWT3op8yPbqpZ-zz2zdX5--ayw8X789fXTZBIZSmFxExxOAHG1sDwzAIE4VEK0zwKmgRvImgldIWrbfkfd_1Ufc4hFiPbs_Y85PuPi3fVsrF7apNmiY_07JmV38PnVXwH6CQFcV_gx3YToOt4Iu_gqg7lNi10lT06R_o9bKmuv3sjJHVXYtHh3CCQlpyThTdPo07nw4OwR3jdse43TFud4q7jjy70fU5-CnWQMKYb-dkayzqtnJPTtxIRLdtBFXX2v4CSV61QA</recordid><startdate>20021001</startdate><enddate>20021001</enddate><creator>Bruce, L.M.</creator><creator>Koger, C.H.</creator><creator>Jiang Li</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20021001</creationdate><title>Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction</title><author>Bruce, L.M. ; Koger, C.H. ; Jiang Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-b2f11cfcad9f380ddd28f241928ca5c62ca8f06556919a9eaab7bf6b1dcfdcf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied geophysics</topic><topic>Automated</topic><topic>Classification</topic><topic>Data analysis</topic><topic>Discrete Wavelet Transform</topic><topic>Discrete wavelet transforms</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Grounds</topic><topic>Hyperspectral imaging</topic><topic>Hyperspectral sensors</topic><topic>Internal geophysics</topic><topic>Remote sensing</topic><topic>Signal resolution</topic><topic>Signatures</topic><topic>Training data</topic><topic>Wavelet analysis</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruce, L.M.</creatorcontrib><creatorcontrib>Koger, C.H.</creatorcontrib><creatorcontrib>Jiang Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruce, L.M.</au><au>Koger, C.H.</au><au>Jiang Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2002-10-01</date><risdate>2002</risdate><volume>40</volume><issue>10</issue><spage>2331</spage><epage>2338</epage><pages>2331-2338</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>In this paper, the dyadic discrete wavelet transform is proposed for feature extraction from a high-dimensional data space. The wavelet's inherent multiresolutional properties are discussed in terms related to multispectral and hyperspectral remote sensing. Furthermore, various wavelet-based features are applied to the problem of automatic classification of specific ground vegetations from hyperspectral signatures. The wavelet transform features are evaluated using an automated statistical classifier. The system is tested using hyperspectral data for various agricultural applications. The experimental results demonstrate the promising discriminant capability of the wavelet-based features. The automated classification system consistently provides over 95% and 80% classification accuracy for endmember and mixed-signature applications, respectively. When compared to conventional feature extraction methods, the wavelet transform approach is shown to significantly increase the overall classification accuracy.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2002.804721</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2002-10, Vol.40 (10), p.2331-2338
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_miscellaneous_28249071
source IEEE Xplore (Online service)
subjects Applied geophysics
Automated
Classification
Data analysis
Discrete Wavelet Transform
Discrete wavelet transforms
Earth sciences
Earth, ocean, space
Exact sciences and technology
Feature extraction
Grounds
Hyperspectral imaging
Hyperspectral sensors
Internal geophysics
Remote sensing
Signal resolution
Signatures
Training data
Wavelet analysis
Wavelet transforms
title Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A03%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dimensionality%20reduction%20of%20hyperspectral%20data%20using%20discrete%20wavelet%20transform%20feature%20extraction&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Bruce,%20L.M.&rft.date=2002-10-01&rft.volume=40&rft.issue=10&rft.spage=2331&rft.epage=2338&rft.pages=2331-2338&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2002.804721&rft_dat=%3Cproquest_cross%3E1671417348%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c510t-b2f11cfcad9f380ddd28f241928ca5c62ca8f06556919a9eaab7bf6b1dcfdcf63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884503310&rft_id=info:pmid/&rft_ieee_id=1105919&rfr_iscdi=true