Loading…
Models of energy sources for EV and HEV: fuel cells, batteries, ultracapacitors, flywheels and engine-generators
Resulting from a Ph.D. research a Vehicle Simulation Programme (VSP) is proposed and continuously developed. It allows simulating the behaviour of electric, hybrid, fuel cell and internal combustion vehicles while driving any reference cycle [Simulation software for comparison and design of electric...
Saved in:
Published in: | Journal of power sources 2004-03, Vol.128 (1), p.76-89 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Resulting from a Ph.D. research a Vehicle Simulation Programme (VSP) is proposed and continuously developed. It allows simulating the behaviour of electric, hybrid, fuel cell and internal combustion vehicles while driving any reference cycle [Simulation software for comparison and design of electric, hybrid electric and internal combustion vehicles with respect to energy, emissions and performances, Ph.D. Thesis, Department Electrical Engineering, Vrije Universiteit Brussel, Belgium, April 2000]. The goal of the simulation programme is to study power flows in vehicle drive trains and the corresponding component losses, as well as to compare different drive train topologies. This comparison can be realised for energy consumption and emissions as well as for performances (acceleration, range, maximum slope, etc.).
The software package and its validation are described in [J. Automot. Eng., SAE IEE 215 (9) (2001) 1043L]. Different hybrid and electric drive trains are implemented in the software [Views on hybrid drive train power management strategies, in: Proceedings of the EVS-17, Montreal, Canada, October 2000]. The models used for the energy sources like fuel cells, batteries, ultracapacitors, flywheels and engine-generator units will be discussed in this paper in three stages: first their functionality and characteristics are described, next the way these characteristics can be implemented in a simulation model will be explained and finally some calculation results will illustrate the approach.
This paper is aimed to give an overview of simulation models of energy sources for battery, hybrid and fuel cell electric vehicles. Innovative is the extreme modularity and exchangeability of different components functioning as energy sources. The unique iteration algorithm of the simulation programme allows to accurately simulate drive train maximum performances as well as all kind of power management strategies in different types of hybrid drive trains [IEEE Trans. Veh. Technol., submitted for publication]. |
---|---|
ISSN: | 0378-7753 1873-2755 |
DOI: | 10.1016/j.jpowsour.2003.09.048 |